Skip to main content
Log in

Rapid Quantitative Analysis of Lipids Using a Colorimetric Method in a Microplate Format

  • Methods
  • Published:
Lipids

Abstract

A colorimetric sulfo-phospho-vanillin (SPV) method was developed for high throughput analysis of total lipids. The developed method uses a reaction mixture that is maintained in a 96-well microplate throughout the entire assay. The new assay provides the following advantages over other methods of lipid measurement: (1) background absorbance can be easily corrected for each well, (2) there is less risk of handling and transferring sulfuric acid contained in reaction mixtures, (3) color develops more consistently providing more accurate measurement of absorbance, and (4) the assay can be used for quantitative measurement of lipids extracted from a wide variety of sources. Unlike other spectrophotometric approaches that use fluorescent dyes, the optimal spectra and reaction conditions for the developed assay do not vary with the sample source. The developed method was used to measure lipids in extracts from four strains of microalgae. No significant difference was found in lipid determination when lipid content was measured using the new method and compared to results obtained using a macro-gravimetric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SPV:

Sulfo-phospho-vanillin

ATCC:

American type culture collection

UTEX:

The culture collection of algae

ANCOVA:

Analysis of covariance

HSD:

Honestly significant differences

vvm:

Volume per volume per minute

References

  1. Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7(3):329–336

    Article  CAS  PubMed  Google Scholar 

  2. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176

    Article  CAS  PubMed  Google Scholar 

  3. Colin R, Zvi C (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160

    Article  Google Scholar 

  4. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291

    Article  CAS  PubMed  Google Scholar 

  5. Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30(Pt 6):1047–1050

    CAS  PubMed  Google Scholar 

  6. Post JR, Parkinson EA (2001) Energy allocation strategy in young fish: allometry and survival. Ecology 82(4):1040–1051

    Article  Google Scholar 

  7. Rinchard J, Czesny S, Dabrowski K (2007) Influence of lipid class and fatty acid deficiency on survival, growth, and fatty acid composition in rainbow trout juveniles. Aquaculture 264(1–4):363–371

    Article  CAS  Google Scholar 

  8. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    CAS  PubMed  Google Scholar 

  9. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  10. Greenspan P, Mayer E, Fowler S (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973

    Article  CAS  PubMed  Google Scholar 

  11. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77(1):41–47

    Article  CAS  PubMed  Google Scholar 

  12. Fowler S, Greenspan P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 33(8):833–836

    CAS  PubMed  Google Scholar 

  13. Huang G-H, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenergy 33(10):1386–1392

    Article  CAS  Google Scholar 

  14. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 56(3):331–338

    Article  CAS  PubMed  Google Scholar 

  15. Chabrol E, Charonnet R (1937) Une novelle reaction pour l’etude des lipides. Presse Med 45:1713

    CAS  Google Scholar 

  16. Desvilettes CH, Bourdier G, Amblard CH, Barth B (1997) Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshw Biol 38(3):629–637

    Article  CAS  Google Scholar 

  17. Greenspan P, Fowler S (1985) Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26(7):781–789

    CAS  PubMed  Google Scholar 

  18. Johnson KR, Ellis G, Toothill C (1977) The sulfophosphovanillin reaction for serum lipids: a reappraisal. Clin Chem 23(9):1669–1678

    CAS  PubMed  Google Scholar 

  19. Knight JA, Anderson S, Rawle JM (1972) Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin Chem 18(3):199–202

    CAS  PubMed  Google Scholar 

  20. Nakamatsu Y, Tanaka T (2004) Food resource use of hyperparasitoid Trichomalopsis apanteloctena (Hymenoptera: Pteromalidae), an idiobiotic ectoparasitoid. Ann Entomol Soc Am 97(5):994–999

    Article  Google Scholar 

  21. Visavadiya NP, Narasimhacharya AVRL (2007) Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats. eCAM:nem091

  22. Turlo J, Gutkowska B, Herold F (2010) Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food Chem Toxicol 48(4):1085–1091

    Article  CAS  PubMed  Google Scholar 

  23. Haskins SD, Kelly DG, Weir RD (2010) Novel pressurized solvent extraction vessels for the analysis of polychlorinated biphenyl congeners in avian whole blood. Anal Chim Acta (in press, corrected proof)

  24. Van Handel E (1985) Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc 1(3):302–304

    PubMed  Google Scholar 

  25. Inouye LS, Lotufo GR (2006) Comparison of macro-gravimetric and micro-colorimetric lipid determination methods. Talanta 70(3):584–587

    Article  CAS  PubMed  Google Scholar 

  26. Landrum PF, Gedeon ML, Burton GA, Greenberg MS, Rowland CD (2002) Biological responses of Lumbriculus variegatus exposed to fluoranthene-spiked sediment. Arch Environ Contam Toxicol 42(3):292–302

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y, Ludsin SA, Fanslow DL, Pothoven SA (2008) Comparison of three microquantity techniques for measuring total lipids in fish. Can J Fish Aquat Sci 65(10):2233–2241

    Article  CAS  Google Scholar 

  28. Martin Bland J, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476):307–310

    Article  Google Scholar 

  29. Ahlgren G, Merino L (1991) Lipid analysis of freshwater microalgae: a method study. Archiv für Hydrobiologie 121(3):295–306

    CAS  Google Scholar 

  30. Barnes H, Blackstock J (1973) Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanilun method for ‘total’ lipids. J Exp Mar Biol Ecol 12(1):103–118

    Article  CAS  Google Scholar 

  31. Isik O, Sarihan E, Kusvuran E, Gul O, Erbatur O (1999) Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174(3–4):299–311

    Article  CAS  Google Scholar 

  32. Khasanova VM, Gusakova SD, Taubaev TT (1978) Composition of the neutral lipids of Chlorella vulgaris. Chem Nat Comp 14(1):37–40

    Article  Google Scholar 

  33. Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93(3):851–856

    Article  CAS  PubMed  Google Scholar 

  34. Hill AM, Feinberg DA (1984) Fuel from microalgae lipid products. p Medium, ED, Size, pp 17–30

  35. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(Suppl 1):S75–S77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by Chevron Technology Ventures and the University of California Energy Institute. The authors wish to thank Orn-u-ma Tanadul for assistance with preparation of algae and assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean S. VanderGheynst.

About this article

Cite this article

Cheng, YS., Zheng, Y. & VanderGheynst, J.S. Rapid Quantitative Analysis of Lipids Using a Colorimetric Method in a Microplate Format. Lipids 46, 95–103 (2011). https://doi.org/10.1007/s11745-010-3494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3494-0

Keywords

Navigation