Skip to main content
Log in

The effect of lyophilization on the solvent extraction of lipid classes, fatty acids and sterols from the oysterCrassostrea gigas

  • Article
  • Published:
Lipids

Abstract

The lipid class compositions of adult Pacific oysters [Crassostrea gigas (Thunberg)] were examined using latroscan thin-layer chromatography/flame-ionization detection (TLC/FID), and fatty acid compositions determined by capillary gas chromatography and gas chromatography/mass spectrometry (GC/MS). The fatty acid methyl esters were separated using argentation TLC and also analyzed as their 4,4-dimethyloxazoline derivatives using GC/MS. Major esterified fatty acids inC. gigas were 16∶0, 20∶5n−3, and 22∶6n−3. C20 and C22 nonmethylene interrupted (NMI) fatty acids comprised 4.5 to 5.9% of the total fatty acids. The NMI trienoic fatty acid 22∶3(7,13,16) was also identified. Very little difference was found in the proportions of the various lipid classes, fatty acids or sterols between samples of adult oysters of two different sizes. However, significant differences in some of the lipid components were evident according to the method of sample preparation used prior to lipid extraction with solvents. Lyophilization (freeze drying) of samples led to a significant reduction in the amounts of triacylglycerols (TG) extracted by solvents in two separate experiments (7.0 and 52.5% extracted). Extracts from lyophilized samples had less 16∶0, C18 unsaturated fatty acids, and 24-ethylcholest-5-en-3β-ol, while C20 and C22 unsaturated fatty acids comprised a higher proportion of the total fatty acids. There was no significant change in the amounts of polar lipids, total sterols, free fatty acids or hydrocarbons observed in extracts from lyophilized samples relative to extracts from nonlyophilized samples. Addition of water to the freezedried samples prior to lipid extraction greatly improved lipid yields and resulted in most of the TG being extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DG:

diacylglycerols

DMDS:

dimethyldisulfide

DMOX:

4,4-dimethyloxazoline

FAME:

fatty acid methyl esters

FFA:

free fatty acids

FID:

flame-ionization detector

GC:

gas chromatography

GC/MS:

gas chromatography/mass spectrometry

NMI:

nonmethylene interrupted

NMID:

nonmethylene interrupted dienoic fatty acid

NMIT:

nonmethylene interrupted trienoic fatty acid

PL:

polar lipids

PUFA:

polyunsaturated (polyenoic) fatty acids

TG:

triacylglycerols

TLC:

thin-layer chromatography

TLC/FID:

thin-layer chromatography/flame-ionization detection

TMTD:

trimethyltridecanoic acid

WE:

was esters

References

  1. Trider, D.J., and Castell, J.D. (1980)J. Nutr. 110, 1303–1309.

    PubMed  CAS  Google Scholar 

  2. Langdon, C.J., and Waldock, M.J. (1981)J. Mar. Biol. Assoc. U.K. 61, 431–448.

    CAS  Google Scholar 

  3. Enright, C.T., Newkirk, G.F., Craigie, J.S., and Castell, J.D. (1986)J. Exp. Mar. Biol. Ecol. 96, 1–13.

    Article  Google Scholar 

  4. Helm, M.M., Holland, D.L., and Stephenson, R.R. (1973)J. Mar. Biol. Ass. UK 53, 673–684.

    Google Scholar 

  5. Gallager, S.M., Mann, R., and Sasaki, G.C. (1986)Aquaculture 56, 81–103.

    Article  CAS  Google Scholar 

  6. Trider, D.J., and Castell, J.D. (1980)Proc. National Shellfisheries Ass. 70, 112–118.

    CAS  Google Scholar 

  7. Ruiz, C., Martinez, D., Mosquera, G., Abad, M., and Sánchez, J.L. (1992)Mar. Biol. 112, 67–74.

    Article  CAS  Google Scholar 

  8. Watanabe, T., and Ackman, R.G. (1974)J. Fish. Res. Bd. Can. 31, 403–409.

    CAS  Google Scholar 

  9. Waldock, M.J., and Nascimento, I.A. (1979)Mar. Biol. Letters 1, 77–86.

    CAS  Google Scholar 

  10. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 912–917.

    Google Scholar 

  11. Peuchant, E., Wolff, R., Salles, C., and Jensen, R. (1989)Anal. Biochem. 181, 341–344.

    Article  PubMed  CAS  Google Scholar 

  12. Cabrini, L., Landi, L., Stefanelli, C., Barzanti, V., and Sechi, A.-M. (1992)Comp. Biochem. Physiol. 101B, 383–386.

    CAS  Google Scholar 

  13. Guckert, J.B., Cooksey, K.E., and Jackson, L.L. (1988)J. Microbiological Met. 8, 139–149.

    Article  CAS  Google Scholar 

  14. Nelson, G.J. (1975) inAnalysis of Lipids and Lipoproteins. (Perkins, E.G., ed.) pp. 1–22, American Oil Chemists' Society, Champaign.

    Google Scholar 

  15. Christie, W.W. (1982)Lipid Analysis, 2nd edn., p. 207, Pergamon Press, Oxford.

    Google Scholar 

  16. van Sumere, C., Geiger, H., Bral D., Fockenier, G., van de Casteele, K., Martenus, M., Haselaer, R., and Gevaert, L. (1983)Anal. Biochem. 131, 530–532.

    Article  PubMed  Google Scholar 

  17. van de Meent, D., Maters, W.L., de Leeuw, J.W., and Schenck, P.A. (1977)Org. Geochem. 1, 7–9.

    Article  Google Scholar 

  18. Holland, D.L., and Gabbott, P.A. (1971)J. Mar. Biol. Ass. UK 51, 659–668.

    Article  CAS  Google Scholar 

  19. Holland, D.L., and Hannant, P.J. (1973)J. Mar. Biol. Ass. UK 53, 833–838.

    CAS  Google Scholar 

  20. Whyte, J.N.C., Bourne, N., and Hodgson, C.A. (1987)J. Exp. Mar. Biol. Ecol. 113, 113–124.

    Article  CAS  Google Scholar 

  21. Fay, L., and Richli, U. (1991)J. Chromatogr. 541, 89–98.

    Article  CAS  Google Scholar 

  22. Hopkins, C.C.E., Siering, J.V., Nyholmen, O., and Hermannsen, A. (1984)Oceanogr. Mar. Biol. Ann. Rev. 22, 211–261.

    CAS  Google Scholar 

  23. Volkman, J.K., Everitt, D.A., and Allen, D.I. (1986)J. Chromatogr. 356, 147–162.

    Article  CAS  Google Scholar 

  24. Nichols, P.D., Guckert, J.B., and White, D.C. (1986)J. Microbiol. Methods 5, 49–55.

    Article  CAS  Google Scholar 

  25. Dudley, P.A., and Anderson, R.E. (1975)Lipids 10, 113–114.

    Article  PubMed  CAS  Google Scholar 

  26. Mann, R., and Gallager, S.M. (1985)J. Exp. Mar. Biol. Ecol. 85, 211–228.

    Article  CAS  Google Scholar 

  27. Farrington, J.W., Davis, A.C., Frew, N.M., and Knap, A. (1988)Mar. Poll. Bull. 19, 372–380.

    Article  CAS  Google Scholar 

  28. Joseph, J.D. (1989) inMarine Biogenic Lipids, Fats and Oils (Ackman, R.G., ed.) Vol. 2, pp. 49–144, CRC Press, Boca Raton.

    Google Scholar 

  29. Chu, F.-L.E., Webb, K.L., and Chen, J. (1990)Comp. Biochem. Physiol. 95A, 385–391.

    Article  CAS  Google Scholar 

  30. Ackman, R.G. (1982) inProc. Second Int. Conf. Aquaculture Nutrit. (Pruder, G.D., Langdon, C.J., and Conklin, D.E., eds.) pp. 358–376, World Mariculture Society Special Publication No. 2, Baton Rouge.

  31. Whyte, J.N.C. (1988)Aquaculture 75, 193–203.

    Article  CAS  Google Scholar 

  32. Ackman, R.G. (1989) inMarine Biogenic Lipids, Fats and Oils (Ackman, R.G., ed.) Vol. 1, pp. 103–138, CRC Press, Boca Raton.

    Google Scholar 

  33. Henderson, R.J., and Almatar, S.M. (1989)J. Mar. Biol. Ass. UK 69, 323–334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dunstan, G.A., Volkman, J.K. & Barrett, S.M. The effect of lyophilization on the solvent extraction of lipid classes, fatty acids and sterols from the oysterCrassostrea gigas . Lipids 28, 937–944 (1993). https://doi.org/10.1007/BF02537504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537504

Keywords

Navigation