Skip to main content
Log in

Impact of Administered Bifidobacterium on Murine Host Fatty Acid Composition

  • Original Article
  • Published:
Lipids

Abstract

Recently, we reported that administration of Bifidobacteria resulted in increased concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in murine adipose tissue [1]. The objective of this study was to assess the impact of co-administration of Bifidobacterium breve NCIMB 702258 and the substrate for EPA, α-linolenic acid, on host fatty acid composition. α-Linolenic acid-supplemented diets (1%, wt/wt) were fed to mice (n = 8), with or without B. breve NCIMB 702258 (daily dose of 109 microorganisms) for 8 weeks. Two further groups received either supplement of B. breve alone or unsupplemented diet. Tissue fatty acid composition was assessed by gas liquid chromatography. Dietary supplementation of α-linolenic acid resulted in higher (P < 0.05) α-linolenic acid and EPA concentrations in liver and adipose tissue and lower (P < 0.05) arachidonic acid in liver, adipose tissue and brain compared with mice that did not receive α-linolenic acid. Supplementation with B. breve NCIMB 702258 in combination with α-linolenic acid resulted in elevated (P < 0.05) liver EPA concentrations compared with α-linolenic acid supplementation alone. Furthermore, the former group had higher (P < 0.05) DHA in brain compared with the latter group. These results suggest a role for interactions between fatty acids and commensals in the gastrointestinal tract. This interaction between administered microbes and fatty acids could result in a highly effective nutritional approach to the therapy of a variety of inflammatory and neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CFU:

Colony forming units

CLA:

Conjugated linoleic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FAME:

Fatty acid methyl esters

IBD:

Inflammatory bowel disease

IFN-γ:

Interferon-γ

MTP:

Microsomal triglyceride transfer protein

MRS:

de Man, Rogosa and Sharpe

PBS:

Phosphate buffered saline

PUFA:

Polyunsaturated fatty acids

PFGE:

Pulse-field gel electrophoresis

SDS:

Special diets services

SEM:

Standard error mean

TNF-α:

Tumor necrosis factor-α

References

  1. Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C (2009) The metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401

    Article  CAS  PubMed  Google Scholar 

  2. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  3. Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52:885–897

    Article  CAS  PubMed  Google Scholar 

  4. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST (2003) Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100:1751–1756

    Article  CAS  PubMed  Google Scholar 

  5. Robinson JG, Stone NJ (2006) Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. Am J Cardiol 98:39–49

    Article  Google Scholar 

  6. Salem N, Wegher B, Mena P, Uauy R (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 93:49–54

    Article  CAS  PubMed  Google Scholar 

  7. Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, Ishibashi Y, Oka J, Shido O (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem 81:1084–1091

    Article  CAS  PubMed  Google Scholar 

  8. Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    Article  PubMed  Google Scholar 

  9. O’Hara AM, Shanahan F (2006) The gut as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  Google Scholar 

  10. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  PubMed  Google Scholar 

  11. Marchesi J, Shanahan F (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20:508–513

    Article  PubMed  Google Scholar 

  12. Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11:307–313

    Article  PubMed  Google Scholar 

  13. Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73:2333–2337

    Article  CAS  PubMed  Google Scholar 

  14. Lee K, Paek K, Lee HY, Park JH, Lee Y (2007) Antiobestity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103:1140–1146

    Article  CAS  PubMed  Google Scholar 

  15. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    Article  CAS  PubMed  Google Scholar 

  16. Orikasa Y, Yamada A, Yu R, Ito Y, Nishida T, Yumoto I (2004) Characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. strain SCRC-2738. Cell Mol Biol 50:625–630

    CAS  PubMed  Google Scholar 

  17. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  18. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767–779

    Article  CAS  PubMed  Google Scholar 

  19. Yano Y, Nakayama A, Saito H, Ishihara K (1994) Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527–528

    Article  CAS  PubMed  Google Scholar 

  20. Kaplas N, Isolauri E, Lampi AM, Ojala T, Laitinen K (2007) Dietary counselling and probiotic supplementation during pregnancy modify placental phospholipid fatty acids. Lipids 45:865–870

    Article  Google Scholar 

  21. Kankaanpää PE, Yang B, Kallio HP, Isolauri E, Salminen SJ (2002) Influence of probiotic supplemented infant formula on composition of plasma lipids in atopic infants. J Nutr Biochem 13:364–369

    Article  PubMed  Google Scholar 

  22. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff U, Hontecillas R (2004) Activation of PPARγ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791

    Article  CAS  PubMed  Google Scholar 

  23. O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT (2007) A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85:1511–1521

    Article  PubMed  Google Scholar 

  24. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54

    Article  PubMed  Google Scholar 

  25. Favier C, Neut C, Mizon C, Cortot A, Colombel JF, Mizon J (1997) Fecal beta-D-galactosidase production and Bifidobacteria are decreased in Crohn’s disease. Dig Dis Sci 42:817–822

    Article  CAS  PubMed  Google Scholar 

  26. Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu PV, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M, Bäckhed F (2009) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res doi:10.1194/jlr.M002774

  27. Oresic M, Seppänen-Laakso T, Yetukuri L, Bäckhed F, Hänninen V (2009) Gut microbiota affects lens and retinal lipid composition. Exp Eye Res 89(5):604–607

    Article  CAS  PubMed  Google Scholar 

  28. Simopoulos AP (2003) Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet 92:1–22

    Article  CAS  PubMed  Google Scholar 

  29. Dinan T, Siggins L, Scully P, O’Brien S, Ross P, Stanton C (2008) Investigating the inflammatory phenotype of major depression: focus on cytokines and polyunsaturated fatty acids. J Psychiatr Res 43:471–476

    Article  PubMed  Google Scholar 

  30. Jupp J, Hillier K, Elliott DH, Fine DR, Bateman AC, Johnson PA, Cazaly AM, Penrose JF, Sampson AP (2007) Colonic expression of leukotriene-pathway enzymes in inflammatory bowel diseases. Inflamm Bowel Dis 13:537–546

    Article  PubMed  Google Scholar 

  31. Wallace JL (2001) Prostaglandin biology in inflammatory bowel disease. Gastroenterol Clin North Am 30:971–980

    Article  CAS  PubMed  Google Scholar 

  32. James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 71:343S–438S

    CAS  PubMed  Google Scholar 

  33. Simopoulos AP, Leaf A, Salem N (2000) Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 63:119–121

    Article  CAS  PubMed  Google Scholar 

  34. Chapkin RS, Davidson LA, Ly L, Weeks BR, Lupton JR, McMurray DN (2007) Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J Nutr 137:200–204

    Google Scholar 

  35. Fukushima M, Yamada A, Endo T, Nakano M (1999) Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta-6 desaturase activity in the livers of rats fed a fat and cholesterol-enriched diet. Nutrition 15:373–378

    Article  CAS  PubMed  Google Scholar 

  36. Troost FJ, van Baarlen P, Lindsey P, Kodde A, de Vos WM, Kleerebezem M, Brummer RJ (2008) Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFSI in vivo. BMC Genomics 9:374–388

    Article  PubMed  Google Scholar 

  37. Nieman C (1954) Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev 18(2):147–163

    CAS  PubMed  Google Scholar 

  38. Laser H (1951) Adaptation of Bacillus subtilis to fatty acids. Biochem J 49(5):lxvi–lxvii

    CAS  PubMed  Google Scholar 

  39. Kelsey JA, Bayles KW, Shafii B, McGuire MA (2006) Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41(10):951–961

    Article  CAS  PubMed  Google Scholar 

  40. Kankanpää PE, Salminen SJ, Isolauri E, Lee YK (2001) The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett 194:149–153

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of Seamus Aherne for fatty acid analysis, Frances O’Brien and Grainne Hurley for assistance with the murine trial. The authors are supported, in part, by Science Foundation Ireland (SFI), the Irish Ministry for Food and Agriculture, the Higher Education Authority and the Health Research Board of Ireland and the Irish Government under the National Development Plan 2000–2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Stanton.

About this article

Cite this article

Wall, R., Ross, R.P., Shanahan, F. et al. Impact of Administered Bifidobacterium on Murine Host Fatty Acid Composition. Lipids 45, 429–436 (2010). https://doi.org/10.1007/s11745-010-3410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3410-7

Keywords

Navigation