Skip to main content
Log in

Fatty acids and monoacylglycerols inhibit growth ofStaphylococcus aureus

  • Articles
  • Published:
Lipids

Abstract

Staphylococcus aureus causes a variety of human infections including toxic shock syndrome, osteomyelitis, and mastitis. Mastitis is a common disease in the dairy cow, andS. aureus has been found to be a major infectious organism causing mastitis. The objectives of this research were to determine which FA and esterified forms of FA were inhibitory to growth ofS. aureus bacteria. FA as well as their mono-, di-, and triacylglycerol forms were tested for their ability to inhibit a human toxic shock syndrome clinical isolate (MN8) and twoS. aureus clinical bovine mastitis isolates (305 and Novel). The seven most potent inhibitors across all strains tested by minimum inhibitory concentration analysis included lauric acid, glycerol monolaurate, capric acid, myristic acid, linoleic acid,cis-9,trans-11 conjugated linoleic acid, andtrans-10,cis-12 conjugated linoleic acid. Some of these lipids were chosen for 48-h growth curve analysis with a bovine mastitisS. aureus isolate (Novel) at doses of 0, 20, 50, and 100 μg/mL except myristic acid, which was tested at 0, 50, 100, and 200 μg/mL. The saturated FA (lauric, capric, myristic) and glycerol monolaurate behaved similarly and reduced overall growth. In contrast, the polyunsaturated FA (linoleic andcis-9,trans-11 conjugated linoleic acid) delayed the time to initiation of exponential growth in a dose-dependent fashion. The results suggest that lipids may be important in the control ofS. aureus during an infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLA:

conjugated linoleic acid

GML:

glycerol monolaurate

MIC:

minimum inhibitory concentration

OD600 :

optical density at 600 nm

TSB:

tryptic soy broth

TSS:

toxic shock syndrome

References

  1. McCormick, J.K., Yarwood, J.M., and Schlievert, P.M. (2001) Toxic Shock Syndrome and Bacterial Superantigens: An Update,Annu. Rev. Microbiol. 55, 77–104.

    Article  PubMed  CAS  Google Scholar 

  2. Fischetti, V. (2000)Gram Positive Pathogens. ASM Press, Washington, DC, pp. 307–470.

    Google Scholar 

  3. Zepeda, L., Buelow, K.L., Nordlund, K.V., Thomas, C.B., Collins, M.T., and Goodger, W.J. (1998) A Linear Programming Assessment of the Profit from Strategies to Reduce the Prevalence ofStaphylococcus aureus Mastitis,Prev. Vet. Med. 33 (1–4), 183–193.

    Article  PubMed  CAS  Google Scholar 

  4. Fetherston, C.M., Lee, C.S., and Hartmann, P.E. (2001) Mammary Gland Defense: the Role of Colostrum, Milk and Involution Secretion,Adv. Nutr. Res. 10, 167–198.

    PubMed  CAS  Google Scholar 

  5. Barbosa-Cesnik, C., Schwartz, K., and Foxman, B. (2003) Lactation Mastitis,JAMA 289, 1609–1612.

    Article  PubMed  Google Scholar 

  6. Thomsen, A.C., Hansen, K.B., and Møller, B.R. (1983) Leukocyte Counts and Microbiologic Cultivation in the Diagnosis of Puerperal Mastitis,Am. J. Obstet. Gynecol. 146, 938–941.

    PubMed  CAS  Google Scholar 

  7. Osterman, K.L., and Rahm, V.A. (2000) Lactation Mastitis: Bacterial Cultivation of Breast Milk, Symptoms, Treatment, and Outcome,J. Human Lact. 16, 297–302.

    CAS  Google Scholar 

  8. Bayliss, M. (1936) Effect of the Chemical Constitution of Soaps Upon their Germicidal Properties,J. Bact. 31, 489–504.

    PubMed  CAS  Google Scholar 

  9. Kodicek, E. (1949) The Effect of Unsaturated Fatty Acids on Gram-Positive Bacteria,Soc. Exp. Biol. Symp. 3, 217–232.

    Google Scholar 

  10. Nieman, C. (1954) Influences of Trace Amounts of Fatty Acids on the Growth of Microorganisms,Bacteriol. Rev. 18, 147–161.

    PubMed  CAS  Google Scholar 

  11. Kabara, J.J., Swieczkowski, D.M., Conley, A.J., and Truant, J.P. (1972) Fatty Acids and Derivatives as Antimicrobial Agents,Antimicrob. Agents Chemother. 2, 23–28.

    PubMed  CAS  Google Scholar 

  12. Knapp, R.K., and Melly, M.A. (1986) Bactericidal Effects of Polyunsaturated Fatty Acids,J. Infect. Dis. 154, 84–94.

    PubMed  CAS  Google Scholar 

  13. Petschow, B.W., Batema, R.P., and Ford, L.L. (1996) Susceptibility ofHelicobacter pylori to Bactericidal Properties of Medium-Chain Monoglycerides and Free Fatty Acids,Antimicrob. Agents Chemother 40, 302–306.

    PubMed  CAS  Google Scholar 

  14. Schlievert, P.M., Deringer, J.R., Kim, M.H., Projan, S.J., and Novick, R.P. (1992) Effect of Glycerol Monolaurate on Bacterial Growth and Toxin Production,Antimicrob. Agent Chemother. 36, 626–631.

    CAS  Google Scholar 

  15. Ruzin, A., and Novick, R.P. (2000) Equivalence of Lauric Acid and Glycerol Monolaurate as Inhibitors of Signal Transduction inStaphylococcus aureus, J. Bacteriol. 182, 2668–2671.

    Article  PubMed  CAS  Google Scholar 

  16. Kabara, J.J. (1980) Lipids as Host-Resistance Factors of Human Milk,Nutr. Rev. 38, 65–73.

    Article  PubMed  CAS  Google Scholar 

  17. Dye, E.S., and Kapral, F.A. (1981) Characterization of a Bactericidal Lipid Within Staphylococcal Abscesses,Infect. Immun. 32, 98–104.

    PubMed  CAS  Google Scholar 

  18. Schäfer, L., and Kragballe, K. (1991) Abnormalities in Epidermal Lipid Metabolism in Patients with Atopic Dermatitis,J. Invest. Dermatol. 96, 10–15.

    Article  PubMed  Google Scholar 

  19. Miller, S.J., Aly, R., Shinefield, H.R., and Elias, P.M. (1988) In Vitro and In Vivo Anti-Staphylococcal Activity of Human Stratum Corneum Lipids,Arch. Dermatol. 124, 209–215.

    Article  PubMed  CAS  Google Scholar 

  20. Heczko, P.B., Lüt, R., Hryniewicz, W., Neugebauer, M., and Pulverer, G. (1979) Susceptibility ofStaphylococcus aureus and Group A, B, C and G Streptococci to Free Fatty Acids,J. Clin. Microbiol. 9, 333–335.

    PubMed  CAS  Google Scholar 

  21. Auldist, M.J., and Hubble, I.B. (1998) Effects of Mastitis on Raw Milk and Dairy Products,Aust. J. Dairy Technol. 53, 28–36.

    Google Scholar 

  22. Fitzgerald, C.H., Deeth, H.C., and Kitchen, B.J. (1981) The Relationship Between the Levels of Free Fatty Acids, Lipoprotein Lipase, Carboxylesterase, N-Acetyl-β-D-Glucosaminidase, Somatic Cell Count and Other Mastitis Indices in Bovine Milk,J. Dairy Res. 48, 253–265.

    CAS  Google Scholar 

  23. Needs, E.C., and Anderson, M. (1984) Lipid Composition of Milks From Cows with Experimentally Induced Mastitis,J. Dairy Res. 51, 239–249.

    PubMed  CAS  Google Scholar 

  24. Bachman, K.C., Hayen, M.J., Morse, D., and Wilcox, C.J. (1988) Effect of Pregnancy, Milk Yield, and Somatic Cell Count on Bovine Milk Fat Hydrolysis,J. Dairy Sci. 71, 925–931.

    PubMed  CAS  Google Scholar 

  25. Murphy, S.C., Cranker, K., Seynk, G.F., Barbano, D.M., Saiman, A.I., and Galton, D.M. (1989) Influence of Bovine Mastitis on Lipolysis and Proteolysis in Milk,J. Dairy Sci. 72, 620–626.

    Article  PubMed  CAS  Google Scholar 

  26. Massart-Leen, A.M., Burvenich, C., and Massart, D.L. (1994) Triacylglycerol Fatty Acid Composition of Milk from Periparturient Cows During AcuteEscherichia coli Mastitis,J. Dairy Res. 61, 191–199.

    PubMed  CAS  Google Scholar 

  27. Bohach, G.A., Kreiswirth, B.N., Novick, R.P., and Schlievert, P.M. (1989) Analysis of Toxic Shock Syndrome Isolates Producing Staphylococcal Enterotoxins B and C1 with Use of Southern Hybridization and Immunologic Assays,Rev. Infect. Dis. 11(Suppl. 1), S75-S81.

    PubMed  CAS  Google Scholar 

  28. Smith, T.H., Fox, L.K., and Middleton, J.R. (1998) An Outbreak of Mastitis Caused by a Single Strain ofStaphylococcus aureus in a Closed Herd Where Strict Milking Time Hygiene Has Been Employed,J. Vet. Med. Assoc. 212, 553–556.

    CAS  Google Scholar 

  29. Newbould, F.H. (1974) Antibiotic Treatment of ExperimentalStaphylococcus aureus Infections of the Bovine Mammary Gland,Can. J. Comp. Med. Vet. Sci. 38, 411–416.

    CAS  Google Scholar 

  30. SAS Institute (2004)SAS Online Doc, Version 9.1. SAS Institute, Inc., Cary, NC http://support.sas.com/91doc/docMainpage.jsp(accessed 8/28/05 to 5/12/06).

    Google Scholar 

  31. Laser, H. (1952) Adaptation ofBacillus subtilis to Fatty Acids,Biochem. J. 51, 57–62.

    PubMed  CAS  Google Scholar 

  32. Kodicek, E., and Worden, A.N. (1945) The Effect of Unsaturated Fatty Acids onLactobacillus helveticus and Other Gram-Positive Micro-Organisms,Biochem. J. 39, 78–85.

    PubMed  CAS  Google Scholar 

  33. Chamberlain, N.R., Mehrtens, B.G., Xiong, Z., Kapral, F.A., Boardman, J.L., and Rearick, J.I. (1991). Correlation of Carotenoid Production, Decreased Membrane Fluidity, and Resistance to Oleic Acid Killin inStaphylococcus aureus 18Z,Infect. Immun. 59, 4332–4337.

    PubMed  CAS  Google Scholar 

  34. Projan, S.J., Brown-Skrobot, S., Schlievert, P.M., Vandenesch, F., and Novick, R.P. (1994) Glycerol Monolaurate Inhibits the Production of β-Lactamase, Toxic Shock Syndrome Toxin-1, and Other Staphylococcal Exoproteins by Interfering with Signal Transduction,J. Bacteriol. 176, 4204–4209.

    PubMed  CAS  Google Scholar 

  35. Engler, H.D., and Kapral, F.A. (1992) The Production of a Bactericidal Monoglyceride in Staphylococcal Abscesses,J. Med. Microbiol. 37(4), 238–244.

    Article  PubMed  CAS  Google Scholar 

  36. Jensen, R.G. (1995)Handbook of Milk Composition. Academic Press, San Diego, pp. 495–576.

    Google Scholar 

  37. Randolph, H.E., and Erwin, R.E. (1974) Influence of Mastitis on Properties of Milk. X. Fatty Acid Composition,J. Dairy Sci. 57, 865–868.

    Article  PubMed  CAS  Google Scholar 

  38. Rollof, J., Hedström, S.A., and Nilsson-Ehle, P. (1987) Positional Specificity and Substrate Preference of PurifiedStaphylococcus aureus Lipase,Biochim. Biophys. Acta 921, 370–377.

    PubMed  CAS  Google Scholar 

  39. Nair, M.K.M., Joy, J., Vasudevan, P., Hinckley, L., Hoagland, T.A., and Venkitanarayanan, K.S. (2005) Antibacterial Effect of Caprylic Acid and Monocaprylin on Major Bacterial Mastitis Pathogens,J. Dairy Sci. 88, 3488–3495.

    PubMed  CAS  Google Scholar 

  40. Vetter, S.M., and Schlievert, P.M. (2005) Glycerol Monolaurate Inhibits Virulence Factor Production inBacillus anthracis, Antimicrob. Agents Chemother 49, 1302–1305.

    Article  PubMed  CAS  Google Scholar 

  41. Vandenesch, F., Kornblum, J., and Novick, R.P. (1991) A Temporal Signal, Independent ofagr, Is Required forhla But Notspa Transcription inStaphylococcus aureus, J. Bacteriol 173, 6313–6320.

    PubMed  CAS  Google Scholar 

  42. Smeltzer, M.S., Gill, S.R., and Iandolo, J.J. (1992) Localization of a Chromosomal Mutation Affecting Expression of Extracellular Lipase inStaphylococcus aureus, J. Bacteriol 174, 4000–4006.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. McGuire.

About this article

Cite this article

Kelsey, J.A., Bayles, K.W., Shafii, B. et al. Fatty acids and monoacylglycerols inhibit growth ofStaphylococcus aureus . Lipids 41, 951–961 (2006). https://doi.org/10.1007/s11745-006-5048-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5048-z

Keywords

Navigation