Skip to main content
Log in

The Percentage of n-3 Highly Unsaturated Fatty Acids in Total HUFA as a Biomarker for Omega-3 Fatty Acid Status in Tissues

  • Original Article
  • Published:
Lipids

Abstract

A blood biomarker of omega-3 fatty acid intake and tissue status could serve as a modifiable risk factor for cardiovascular disease. The percentage of omega-3 highly unsaturated fatty acid (HUFA ≥ 20 carbons and ≥3 double bonds) in the total HUFA pool (the n-3 HUFA score) was examined as a potential blood biomarker of omega-3 fatty acids in tissues. The fatty acid composition of total lipid extracts (TLE) and phospholipid (PL) fractions were determined for plasma and erythrocytes samples of human subjects (n = 20) and the n-3 HUFA score and the sum of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were compared. Omega-3 fatty acids in blood and tissues of rats (n = 31) and pigs (n = 48) were also determined and the associations were compared. The n-3 HUFA score is more consistent across plasma and erythrocytes, with strong correlations between TLE and PL in plasma (r = 0.93) and erythrocytes (r = 0.94). The n-3 HUFA score was less variable and blood levels correlated strongly with various animal tissues. The n-3 HUFA score is a useful blood biomarker that does not require the isolation of the PL class thereby supporting high throughput analyses. The strength of association between the n-3 HUFA score and disease risk needs to be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GISSI-Prevenzione Investigators (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354:447–455

    Article  Google Scholar 

  2. Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, Willett WC, Ruskin JN, Manson JE (1998) Fish consumption and risk of sudden cardiac death. JAMA 279:23–28

    Article  PubMed  CAS  Google Scholar 

  3. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J (2002) Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 346:1113–1118

    Article  PubMed  CAS  Google Scholar 

  4. Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS (2003) n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr 77:319–325

    PubMed  CAS  Google Scholar 

  5. Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, Cox B, Zhang H, Schoenfeld D (2005) Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 112:2762–2768

    Article  PubMed  CAS  Google Scholar 

  6. Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB (2005) Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 112:1945–1952

    Article  PubMed  CAS  Google Scholar 

  7. Mozaffarian D (2007) JELIS, fish oil, and cardiac events. Lancet 369:1062–1063

    Article  PubMed  Google Scholar 

  8. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369:1090–1098

    Article  PubMed  CAS  Google Scholar 

  9. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  10. Baylin A, Campos H (2006) The use of fatty acid biomarkers to reflect dietary intake. Curr Opin Lipidol 17:22–27

    Article  PubMed  CAS  Google Scholar 

  11. Harris WS, Von Schacky C (2004) The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med 39:212–220

    Article  PubMed  CAS  Google Scholar 

  12. Harris WS, Sands SA, Windsor SL, Ali HA, Stevens TL, Magalski A, Porter CB, Borkon AM (2004) Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: correlation with erythrocytes and response to supplementation. Circulation 110:1645–1649

    Article  PubMed  CAS  Google Scholar 

  13. Lands WE (1995) Long-term fat intake and biomarkers. Am J Clin Nutr 61:721S–725S

    PubMed  CAS  Google Scholar 

  14. Stark KD, Beblo S, Murthy M, Buda-Abela M, Janisse J, Rockett H, Whitty JE, Martier SS, Sokol RJ, Hannigan JH, Salem N Jr (2005) Comparison of bloodstream fatty acid composition from African-American women at gestation, delivery, and postpartum. J Lipid Res 46:516–525

    Article  PubMed  CAS  Google Scholar 

  15. Mohrhauer H, Holman RT (1963) The effect of dose level of essential fatty acids upon fatty acid composition of the rat liver. J Lipid Res 58:151–159

    Google Scholar 

  16. Stark KD, Beblo S, Murthy M, Whitty JE, Buda-Abela M, Janisse J, Rockett H, Martier SS, Sokol RJ, Hannigan JH, Salem N Jr (2005) Alcohol consumption in pregnant, black women is associated with decreased plasma and erythrocyte docosahexaenoic acid. Alcohol Clin Exp Res 29:130–140

    Article  PubMed  CAS  Google Scholar 

  17. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  18. Reed CF, Swisher SN, Marinetti GV, Eden EG (1960) Studies of the lipids of the erythrocyte. I. Quantitative analysis of the lipids of normal human red blood cells. J Lab Clin Med 56:281–289

    PubMed  CAS  Google Scholar 

  19. Rapoport SI, Chang MC, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42:678–685

    PubMed  CAS  Google Scholar 

  20. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  21. Salem N Jr, Reyzer M, Karanian J (1996) Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids 31(Suppl 1):S153–S156

    Article  PubMed  CAS  Google Scholar 

  22. Lim SY, Hoshiba J, Salem N Jr (2005) An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 95:848–857

    Article  PubMed  CAS  Google Scholar 

  23. Stark KD, Lim SY, Salem N Jr (2007) Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition. Lipids Health Dis 6:13

    Article  PubMed  CAS  Google Scholar 

  24. Stark KD, Lim SY, Salem N Jr (2007) Artificial rearing with docosahexaenoic acid and n-6 docosapentaenoic acid alters rat tissue fatty acid composition. J Lipid Res 48:2471–2477

    Article  PubMed  CAS  Google Scholar 

  25. Bazinet RP, McMillan EG, Cunnane SC (2003) Dietary alpha-linolenic acid increases the n-3 PUFA content of sow’s milk and the tissues of the suckling piglet. Lipids 38:1045–1049

    Article  PubMed  CAS  Google Scholar 

  26. Bazinet RP, McMillan EG, Seebaransingh R, Hayes AM, Cunnane SC (2003) Whole-body beta-oxidation of 18:2omega6 and 18:3omega3 in the pig varies markedly with weaning strategy and dietary 18:3omega3. J Lipid Res 44:314–319

    Article  PubMed  CAS  Google Scholar 

  27. Staufenbiel M (1988) Fatty acids covalently bound to erythrocyte proteins undergo a differential turnover in vivo. J Biol Chem 263:13615–13622

    PubMed  CAS  Google Scholar 

  28. Skeaff CM, Hodson L, McKenzie JE (2006) Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. J Nutr 136:565–569

    PubMed  CAS  Google Scholar 

  29. Christie WW (1985) Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res 26:507–512

    PubMed  CAS  Google Scholar 

  30. Lemaitre-Delaunay D, Pachiaudi C, Laville M, Pousin J, Armstrong M, Lagarde M (1999) Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [(13)C]DHA in phosphatidylcholine. J Lipid Res 40:1867–1874

    PubMed  CAS  Google Scholar 

  31. Salem N Jr, Litman B, Kim HY, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    Article  PubMed  CAS  Google Scholar 

  32. Conquer JA, Cheryk LA, Chan E, Gentry PA, Holub BJ (1999) Effect of supplementation with dietary seal oil on selected cardiovascular risk factors and hemostatic variables in healthy male subjects. Thromb Res 96:239–250

    Article  PubMed  CAS  Google Scholar 

  33. Murphy MG, Wright V, Scott J, Timmins A, Ackman RG (1999) Dietary menhaden, seal, and corn oils differentially affect lipid and ex vivo eicosanoid and thiobarbituric acid-reactive substances generation in the guinea pig. Lipids 34:115–124

    Article  PubMed  CAS  Google Scholar 

  34. Dewailly E, Blanchet C, Gingras S, Lemieux S, Holub BJ (2003) Fish consumption and blood lipids in three ethnic groups of Quebec (Canada). Lipids 38:359–365

    Article  PubMed  CAS  Google Scholar 

  35. Denomme J, Stark KD, Holub BJ (2005) Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. J Nutr 135:206–211

    PubMed  CAS  Google Scholar 

  36. Innis SM, Elias SL (2003) Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am J Clin Nutr 77:473–478

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Norman Salem Jr. and Sun-Young Lim for providing the rat tissue data and Stephen Cunnane for providing pig tissue data. I would like to acknowledge William Lands for inspiring the analysis and concepts presented herein. Ken Stark received salary support and was supported by a Gender and Sex Determinants of Cardiovascular Disease: from Bench to Beyond (GENESIS) Young Investigator salary award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken D. Stark.

About this article

Cite this article

Stark, K.D. The Percentage of n-3 Highly Unsaturated Fatty Acids in Total HUFA as a Biomarker for Omega-3 Fatty Acid Status in Tissues. Lipids 43, 45–53 (2008). https://doi.org/10.1007/s11745-007-3128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3128-3

Keywords

Navigation