Skip to main content
Log in

Differential effects of modulation of docosahexaenoic acid content during development in specific regions of rat brain

  • Articles
  • Published:
Lipids

Abstract

Variation in brain FA composition, particularly decreased DHA (22ŋ6n−3), affects neurodevelopment, altering visual, attentional, and cognitive functions, and is implicated in several neuropsychiatric disorders. To further understand how specific brain processes and systems are affected by variation in brain DHA content, we sought to determine whether specific brain regions were differentially affected by treatments that after brain DHA content. Adult male Long-Evans rats were raised from conception using diet/breeding treatments to produce four groups with distinct brain phospholipid compositions. Total phospholipid FA composition was determined in whole brain and 15 brain regions by TLC/GC. Brain regions exhibited significantly different DHA contents, with the highest levels observed in the frontal cortex and the lowest in the substantia nigra/ventral tegmental area. Increased availability of DHA resulted in increased DHA content only in the olfactory bulb, parietal cortex, and substantia nigra/ventral tegmental area. In contrast, treatment that decreased whole-brain DHA levels decreased DHA content in all brain regions except the thalamus, dorsal midbrain, and the substantia nigra/ventral tegmental area. Alterations in DHA level were accompanied by changes in docosapentaenoic acid (n−6 DPA, 22∶5n−6) content; however, the change in DHA and n−6 DPA was nonreciprocal in some brain regions. These findings demonstrate that the FA compositions of specific brain regions are differentially affected by variation in DHA availability during development. These differential effects may contribute to the specific neurochemical and behavioral effects observed in animals with variation in brain DHA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LC-PUFA:

long-chain PUFA

MUFA:

monounsaturated FA

n−6 DPA:

docosapentaenoic acid

SFA:

saturated FA

References

  1. Nakamura, M.T., Cho, H.P., Xu, J., Tang, Z., and Clarke, S.D. (2001) Metabolism and Functions of Highly Unsaturated Fatty Acids: An Update, Lipids 36, 961–964.

    Article  PubMed  CAS  Google Scholar 

  2. Salem, N., Jr., Litman, B., Kim, H.-Y., and Gawrisch, K. (2001) Mechanisms of Action of Docosahexaenoic Acid in the Nervous System, Lipids 36, 945–960.

    Article  PubMed  CAS  Google Scholar 

  3. Uauy, R., Hoffman, D.C., Peirano, P., Birch, D.G., and Birch, E.E. (2001) Essential Fatty Acids in Visual and Brain Development, Lipids. 36, 885–896.

    Article  PubMed  CAS  Google Scholar 

  4. McCann, J.C., and Ames, B.N. (2005) Is Docosahexaenoic Acid, an n−3 Long-Chain Polyunsaturated Fatty Acid, Required for Development of Normal Brain Function? An Overview of Evidence from Cognitive and Behavioral Tests in Humans and Animals, Am. J. Clin. Nutr. 82, 281–295.

    PubMed  CAS  Google Scholar 

  5. Carlson, S.E., and Neuringer, M. (1999) Polyunsaturated Fatty Acid Status and Neurodevelopment: A Summary and Critical Analysis of the Literature, Lipids 34, 171–178.

    Article  PubMed  CAS  Google Scholar 

  6. Wainwright, P.E. (2002) Dietary Essential Fatty Acids and Brain Function: A Developmental Perspective on Mechanisms, Proc. Nutr. Soc. 61, 61–69.

    PubMed  CAS  Google Scholar 

  7. Fenton, W.S., Hibbeln, J., and Knable, M. (1999) Essential Fatty Acids. Lipid Membrane Abnormalities, and the Diagnosis and Treatment of Schizophrenia, Biol Psychiatr. 47, 8–21.

    Article  Google Scholar 

  8. Freeman, M. (2000) Omega-3 Fatty Acids in Psychiatry: A Review, Ann. Clin. Psychiatr. 12, 159–165.

    Article  CAS  Google Scholar 

  9. Richardson, A.J., and Puri, B.K. (2000) The Potential Role of Fatty Acids in Attention-Deficit/Hyperactivity Disorder, Prostaglandins Leukot. Essent. Fatty Acids 63, 79–87.

    Article  PubMed  CAS  Google Scholar 

  10. Levant, B., Ozias, M.K., and Carlson, S.E. (2006) Sex-specific Effects of Brain LC-PUFA Composition on Locomotor Activity in Rats, Physiol. Behav., in press.

  11. National Research Council, (1996) Guide for the Care and Use of Laboratory Animals, pp. 125, National Academy Press, Washington, D.C.

    Google Scholar 

  12. Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993) AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76a Rodent Diet, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  13. Glowinski, J., and Iversen, L.L. (1966) Regional Studies of Catecholamines in the Rat Brain, J. Neurochem. 13, 665–669.

    Article  Google Scholar 

  14. Dodge, J.T., and Phillips, G.B. (1967) Composition of Phospholipids and of Phospholipid Fatty Acids and Aldehydes in Human Red Cells, J. Lipid Res. 8, 667–675.

    PubMed  CAS  Google Scholar 

  15. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  16. Zail, S.S., and Pickering, A. (1979) Fatty Acid Composition of Erythrocytes in Hereditary Spherocytosis, Br. J. Haematol. 42, 339–402.

    Google Scholar 

  17. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Trifluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  18. Cohen, J., Cohen, P., West, S.G., and Aiken, L.S. (2003) Applied Multiple Regression Correlation Analysis for the Behavioral Sciences, pp. 1200. Lawrence Erlbaum Associates, Mahwah, NJ.

    Google Scholar 

  19. Sinclair, A.J. (1975) Long Chain Polyunsaturated Fatty Acids in the Mammalian Brain, Proc. Nutr. Soc. 34, 287–291.

    Article  PubMed  CAS  Google Scholar 

  20. Favreliere, S., Barrier, L., Durand, G., Chalon, S., and Tallineau, C. (1998) Chronic Dietary n−3 Polyunsaturated Fatty Acids Deficiency Affects the Fatty Acid Composition of Plasmenylethanolamine and Phosphatidylethanolamine Differently in Rat Frontal Cortex, Striatum, and Cerebellum, Lipids 33, 401–407.

    Article  PubMed  CAS  Google Scholar 

  21. Levant, B., Crane, J.F., and Carlson, S.E. (2006) Sub-Chronic Antipsychotic Drug Treatment Does Not Alter Brain Phospholipid Fatty Acid Composition in Rats, Prog. Neuropsychopharmacol. Biol Psychiatr. 30, 728–732.

    Article  CAS  Google Scholar 

  22. Lim, S.Y., Doherty, J.D., and Salem, N., Jr. (2005) Lead Exposure and (n−3) Fatty Acid Deficiency During Rat Neonatal Development Alter Liver, Plasma, and Brain Polyunsaturated Fatty Acid Composition, J. Nutr. 135, 1027–1033.

    PubMed  CAS  Google Scholar 

  23. Bourre, J.M., Dumont, O.S., Piciotti, M.J., Pascal, G.A., and Durand, G.A. (1992) Dietary Alpha-Linolenic Acid Deficiency in Adult Rats for 7 Months Does Not Alter Brain Docosahexaenoic Acid Content, in Contrast to Liver, Heart and Testes, Biochim. Biophys. Acta 1124, 119–122.

    PubMed  CAS  Google Scholar 

  24. Makrides, A., Neumann, M.A., Byard, R.W., Simmer, K., and Gibson, R.A. (1994) Fatty Acid Composition of Brain, Retina, and Erythrocytes in Breast- and Formula-Fed Infants, Am. J. Clin. Nutr. 60, 189–194.

    PubMed  CAS  Google Scholar 

  25. Farquharson, J., Cockburn, F., Patrick, W.A., Jamieson, E.C., and Logan, R.W. (1992) Infant Cerebral Cortex Phospholipid Fatty-Acid Composition and Diet, Lancet 340, 810–813.

    Article  PubMed  CAS  Google Scholar 

  26. Levant, B., Radel, J.D., and Carlson, S.E. (2004) Decreased Brain Docosahexaenoic Acid During Development Alters Dopamine-Related Behaviors in Adult Rats That Are Differentially Affected by Dietary Remediation, Behav. Brain Res. 152, 49–57.

    PubMed  CAS  Google Scholar 

  27. Carrie, I., Clement, M., de Javel, D., Frances, H., and Bourre, J.M. (2000) Specific Phospholipid Fatty Acid Composition of Brain Regions in Mice Effects of n−3 Polyunsaturated Fatty Acid Deficiency and Phospholipid Supplementation, J. Lipid Res. 41, 465–472.

    PubMed  CAS  Google Scholar 

  28. Xiao, Y., Huang, Y., and Chen, Z.Y. (2005) Distribution, Depletion and Recovery of Docosahexaenoic Acid Are Region-Specific in Rat Brain, Br. J. Nutr. 94, 544–550.

    Article  PubMed  CAS  Google Scholar 

  29. Diau, G. Y., Hsieh, A. T., Sarkadi-Nagy, E. A., Wijendran, V., Nathanielsz, P.W., and Brenna, J.T. (2005) The Influence of Long Chain Polyunsaturate Supplementation on Docosahexaenoic Acid and Arachidonic Acid in Baboon Neonate Central Nervous System, BMC Med. 3, 11.

    Article  PubMed  CAS  Google Scholar 

  30. Moriguchi, T., Lim, S.Y., Greiner, R., Lefkowitz, W., Loewke, J., Hoshiba, J., and Salem, N. Jr. (2004) Effects of an n−3-Deficient Diet on Brain, Retina, and Liver Fatty Acyl Composition in Artificially Reared Rats, J. Lipid Res. 45, 1437–1445.

    Article  PubMed  CAS  Google Scholar 

  31. Moriguchi, T., Loewke, J., Garrison, M., Catalan, J.N., and Salem, N., Jr. (2001) Reversal of Docosahexaenoic Acid Deficiency in the Rat Brain, Retina, Liver, and Serum, J. Lipid Res. 42, 419–427.

    PubMed  CAS  Google Scholar 

  32. Mitchell, E.A., Aman, M.G., Turbott, S.H., and Manku, M.S. (1987) Clinical Characteristics and Serum Fatty Acid Levels in Hyperactive Children, Clin. Pediatrics 26, 406–411.

    CAS  Google Scholar 

  33. Stevens, L., Zentall, S.S., Deck, J.L., Abate, M.L., Watkins, B.A., Lipp, S.R., and Burgess, J.R. (1995) Essential Fatty Acid Metabolism in Boys with Attention-Deficit Hyperactivity Disorder. Am. J. Clin. Nutr. 62, 761–768.

    PubMed  CAS  Google Scholar 

  34. Arvindakshan, M., Sitasawad, S., Debsikdar, V., Ghate, M., Evans, D., Horrobin, D.F., Bennett, C., Ranjekar, P.K., and Mahadik, S.P. (2003) Essential Polyunsaturated Fatty Acid and Lipid Peroxide Levels in Never-Medicated and Medicated Schizophrenia Patients, Biol. Psychiatr. 53, 56–64.

    Article  CAS  Google Scholar 

  35. Assies, J., Lieverse, R., Vreken, P., Wanders, R.J., Dingemans, P.M., and Linszen, D.H. (2001) Significantly Reduced Docosahexaenoic and Docosapentaenoic Acid Concentrations in Erythrocyte Membranes from Schizophrenic Patients Compared with a Carefully Matched ALA Group, Biol. Psychiatr. 49, 510–522.

    Article  CAS  Google Scholar 

  36. Khan, M.M., Evans, D.R., Gunna, V., Scheffer, R.E., Parikh, V.V., and Mahadik, S.P. (2002) Reduced Erythrocyte Membrane Essential Fatty Acids and Increased Lipid Peroxides in Schizophrenia at the Never-Medicated First-Episode of Psychosis and After Years of Treatment with Antipsychotics, Schizophr. Res. 58, 1–10.

    Article  PubMed  Google Scholar 

  37. Peet, M., Laugharne, J.D.E., Mellor, J.E., and Ramchand, C.N. (1996) Essential Fatty Acid Deficiency in Erythrocyte Membranes from Chronic Schizophrenic Patients, and the Clinical Effects of Dietary Supplementation, Prostaglandins Leukot. Essent. Fatty Acids 55, 71–75.

    Article  PubMed  CAS  Google Scholar 

  38. Murthy, M., Hamilton, J., Greiner, R.S., Moriguchi, T., Salem, N., Jr., and Kim, H.Y. (2002) Differential Effects of n−3 Fatty Acid Deficiency on Phospholipid Molecular Species Composition in the Rat Hippocampus, J. Lipid Res. 43, 611–617.

    PubMed  CAS  Google Scholar 

  39. Bourre, J.N., Pascal, G., Durand, G., Masson, M., Dumonst, O., and Piciotti, M. (1984) Alterations in the Fatty Acid Composition of Rat Brain Cells (Neurons, Astrocytes, and Oligodendrocytes) and of Subcellular Fractions (Myelin and Synaptosomes) Induced by a Diet Devoid of n−3 Fatty Acids, J. Neurochem. 43, 342–348.

    Article  PubMed  CAS  Google Scholar 

  40. Greiner, R.S., Catalan, J.N., Moriguchi, T., and Salem, N., Jr. (2003) Docosapentaenoic Acid Does Not Completely Replace DHA in n−3 FA-Deficient Rats During Early Development, Lipids 38, 431–435.

    Article  PubMed  CAS  Google Scholar 

  41. Salem, N., Jr., Loewke, J., Catalan, J.N., Majchrzak, S., and Moriguchi, T. (2005) Incomplete Replacement of Docosahexaenoic Acid by n−6 Docosapentaenoic Acid in the Rat Retina After an n−3 Fatty Acid Deficient Diet, Exp. Eye Res. 81, 655–663.

    Article  PubMed  CAS  Google Scholar 

  42. Chalon, S., Vancassel, S., Zimmer, L., Guilloteau, D., and Durand, G. (2001) Polyunsaturated Fatty Acids and Cerebral Function: Focus on Monoaminergic Neurotransmission, Lipids 36, 937–944.

    Article  PubMed  CAS  Google Scholar 

  43. Reisbick, S., Neuringer, M., Hasnain, R., and Connor, W.E. (1994) Home Cage Behavior of Rhesus Monkeys with Long-Term Deficiency of Omega-3 Fatty Acids, Physiol. Behav. 55, 231–239.

    Article  PubMed  CAS  Google Scholar 

  44. Carrie, I., Clement, M., de Javel, D., Frances, H., and Bourre, J.M. (2000) Phospholipid Supplementation Reverses Behavioral and Biochemical Alterations Induced by n−3 Polyunsaturated Fatty Acid Deficiency in Mice, J. Lipid Res. 41, 473–480.

    PubMed  CAS  Google Scholar 

  45. Chalon, S., Delion Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A.M., Besnard, J.C., and Durand, G. (1998) Dietary Fish Oil Affects Monoaminergic Neurotransmission and Behavior in Rats, J. Nutr. 128, 2512–2519.

    PubMed  CAS  Google Scholar 

  46. Enslen, M., Milon, H., and Malnoe, A. (1991) Effect of Low Intake of n−3 Fatty Acids During Development on Brain Phospholipid Fatty Acid Composition and Exploratory Behavior in Rats, Lipids 26, 203–208.

    Article  PubMed  CAS  Google Scholar 

  47. Radel, J., Levant, B., and Carlson, S.E. (2002) Effects of Developmental DHA Deficiency and Remediation upon Evoked Brain Activity at Maturity in Rats, Soc. Neurosci. Abst. 32, 106.5.

    Google Scholar 

  48. Lim, S.Y., Doherty, J.D., McBride, K., Miller-Ihli, N.J., Carmona, G.N., Stark, K.D., and Salem, N., Jr. (2005) Lead Exposure and (n−3) Fatty Acid Deficiency During Rat Neonatal Development Affect Subsequent Spatial Task Performance and Olfactory Discrimination, J. Nutr. 135, 1019–1026.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Levant.

About this article

Cite this article

Levant, B., Ozias, M.K., Jones, K.A. et al. Differential effects of modulation of docosahexaenoic acid content during development in specific regions of rat brain. Lipids 41, 407–414 (2006). https://doi.org/10.1007/s11745-006-5114-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5114-6

Keywords

Navigation