Skip to main content
Log in

Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission

  • Published:
Lipids

Abstract

More and more reports in recent years have shown that the intake of polyunsaturated fatty acids (PUFA) constitutes an environmental factor able to act on the central nervous system (CNS) function. We recently demonstrated that the effects of PUFA on behavior can be mediated through effects on the monoaminergic neurotransmission processes. Supporting this proposal, we showed that chronic dietary deficiency in α-linolenic acid in rats induces abnormalities in several parameters of the mesocortical and mesolimbic dopaminergic systems. In both systems, the pool of dopamine stored in presynaptic vesicles is strongly decreased. This may be due to a decrease in the number of vesicles. In addition, several other factors of dopaminergic neurotransmission are modified according to the system affected. The mesocortical system seems to be hypofunctional overall [e.g., decreased basal release of dopamine (DA) and reduced levels of dopamine D2 (DAD2) receptors]. In contrast, the mesolimbic system seems to be hyperfunctional overall (e.g., increased basal release of DA and increased levels of DAD2 receptors). These neurochemical changes are in agreement with modifications of behavior already described with this deficiency. The precise mechanisms explaining the effects of PUFA on neurotransmission remain to be clarified. For example, modifications of physical properties of the neuronal membrane, effects on proteins (receptors, transporters) enclosed in the membrane, and effects on gene expression and/or transcription might occur. Whatever the mechanism, it is therefore assumed that interactions exist among PUFA, neurotransmission, and behavior. This might be related to clinical findings. Indeed, deficits in the peripheral amounts of PUFA have been described in subjects suffering from neurological and psychiatric disorders. Involvement of the monoaminergic neurotransmission function has been demonstrated or hypothesized in several of these diseases. It can therefore be proposed that functional links exist among PUFA status, neurotransmission processes, and behavioural disorders in humans. Animal models are tools of choice for the understanding of such links. Improved prevention and complementary treatment of neurological and psychiatric diseases can be expected from these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ADHD:

attention deficit/hyperactivity disorder

CNS:

central nervous system

DA:

dopamine

DAD:

dopamine D2

DAT:

DA transporters

DHA:

docosahexaenoic acid

DnR:

dopamine receptor

Dopac:

dihydrophenylacetic acid

EFA:

essential fatty acids

FA:

fatty acid

GABA:

γ-aminobutyric acid

HPLC:

high-performance liquid chromatography

LC:

long chain

PUFA:

polyunsaturated fatty acids

VMAT2 :

vesicular monoamine transporter

References

  1. Bourre, J.-M., Pascal, G., Durand, G., Masson, O., and Piciotti, M. (1984) Alteration in the Fatty Acid Composition of Rat Brain Cells (neurons, astrocytes and oligodendrocytes) and Subcellular Fractions (myelin and synaptosomes) Induced by a Diet Devoid of n−3 Fatty Acids, J. Neurochem. 43, 342–348.

    Article  PubMed  CAS  Google Scholar 

  2. Galli, C., White, H.B., and Paoletti, R. (1970) Brain Lipid Modifications Induced by Essential Fatty Acid Deficiency in Growing Male and Female Rats, J. Neurochem. 17, 347–355.

    Article  PubMed  CAS  Google Scholar 

  3. Bourre, J.-M., François, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary α-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Electrophysiological Parameters, Resistance to Poisons and Performance of Learning Task in Rats, J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  4. Yamamoto, N., Saitoh, M., Moriuchi, A., Nomura, M., and Okuyama, H. (1987) Effect of Dietary α-Linolenate/Linoleate Balance on Brain Lipid Compositions and Learning Ability of Rats, J. Lipid Res. 28, 144–151.

    PubMed  CAS  Google Scholar 

  5. Yamamoto, N., Hashimoto, A., Takemoto, Y., Okuyama, H., Nomura, M., Kitajima, R., Togashi, T., and Tamai, Y. (1988) Effects of the Dietary Alpha-Linolenate/Linoleate Balance on Lipid Compositions and Learning Ability of Rats. II. Discrimination Process, Extinction Process, and Glycolipid Compositions, J. Lipid Res. 29, 1013–1021.

    PubMed  CAS  Google Scholar 

  6. Delion, S., Chalon, S., Hérault, J., Guilloteau, D., Besnard, J.-C., and Durand, G. (1994) Chronic Dietary α-Linolenic Acid Deficiency Alters Dopaminergic and Serotoninergic Neurotransmission in Rats, J. Nutr. 124, 2466–2476.

    PubMed  CAS  Google Scholar 

  7. Carrié, I., Clémént, M., De Javel, D., Francès, H., and Bourre, J.-M. (2000) Specific Phospholipid Fatty Acid Composition of Brain Regions in Mice: Effects of n−3 Polyunsaturated Fatty Acid Deficiency and Phospholipid Supplementation, J. Lipid Res. 41, 465–472.

    PubMed  Google Scholar 

  8. Favrelière, S., Barrier, L., Durand, G., Chalon, S., and Tallineau, C. (1998) Chronic Dietary n−3 Polyunsaturated Fatty Acids Deficiency Affects the Fatty Acid Composition of Plasmenylethanolamine and Phosphatidylethanolamine Differently in Rat Frontal Cortex, Striatum, and Cerebellum, Lipids 33, 401–407.

    Article  PubMed  Google Scholar 

  9. Wainwright, P.E. (1992) Do Essential Fatty Acids Play a Role in Brain and Behavioral Development? Neurosci. Behav. Rev. 16, 193–205.

    CAS  Google Scholar 

  10. Francès, H., Monier, C., and Bourre, J.-M. (1995) Effects of Dietary α-Linolenic Acid Deficiency on Neuromuscular and Cognitive Function in Mice, Life Sci. 57, 1935–1947.

    Article  PubMed  Google Scholar 

  11. Wainwright, P.E. (1997) Essential Fatty Acids and Behavior, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology, (Yehuda, S., and Mostofsky, D.I., eds.) pp. 299–341, Humana Press, Totowa, NJ.

    Google Scholar 

  12. Le Moal, M., and Simon, R. (1991) Mesocorticolimbic Dopaminergic Networks: Functional and Regulatory Roles, Physiol. Rev. 71, 155–234.

    PubMed  Google Scholar 

  13. Deutsch, A.Y., and Cameron, D.S. (1992) Pharmacological Characterization of Dopamine Systems in the Nucleus Accumbens Core and Shell, Neuroscience 46, 49–56.

    Article  Google Scholar 

  14. Le Moal, M. (1995) Mesocorticolimbic Dopaminergic Neurons. Functional and Regulatory Roles, in Psychopharmacologh: The Fourth Generation of Progress, pp. 283–294, Raven Press, New York.

    Google Scholar 

  15. Bourre, J.-M., Dumont, O., Pascal, G., and Durand, G. (1993) Dietary α-Linolenic Acid at 1.3 g/kg Maintains Maximal Docosahexaenoic Acid Concentration in Brain, Heart and Liver of Adult Rats, J. Nutr. 123, 1313–1319.

    PubMed  CAS  Google Scholar 

  16. Delion, S., Chalon, S., Guilloteau, D., Besnard, J.-C., and Durand, G. (1996) α-Linolenic Acid Dietary Deficiency Alters Age-Related Changes of Dopaminergic and Serotoninergic Neurotransmission in the Rat Frontal Cortex, J. Neurochem. 66, 1582–1591.

    Article  PubMed  CAS  Google Scholar 

  17. Ungerstedt, U. (1984) Measurement of Neurotransmitter Release by Intracranial Dialysis, in Measurement of Neurotransmitter Release in vivo (Marsden, C.A., ed.), pp. 81–105, Wiley, New York.

    Google Scholar 

  18. Di Chiara, G., Tanda, G., and Carboni, E. (1996) Estimation of in-vivo Neurotransmitter Release by Brain Microdialysis: The Issue of Validity, Behav. Pharmacol. 7, 640–657.

    Article  PubMed  Google Scholar 

  19. Zimmer, L., Hembert, S., Durand, G., Breton, P., Guilloteau, D., Besnard, J.-C., and Chalon, S. (1998) Chronic n−3 Polyunsaturated Fatty Acid Diet-Deficiency Acts on Dopamine Metabolism in the Rat Frontal Cortex: A Microdialysis Study, Neurosci. Lett. 240, 177–181.

    Article  PubMed  CAS  Google Scholar 

  20. Zimmer, L., Delion-Vancassel, S., Durand, G., Guilloteau, D., Bodard, S., Besnard, J.-C., and Chalon, S. (2000) Modification of Dopamine Neurotransmission in the Nucleus Accumbens of Rats Deficient in n−3 Polyunsaturated Fatty Acids, J. Lipid Res. 41, 32–40.

    PubMed  CAS  Google Scholar 

  21. Zimmer, L., Durand, G., Breton, P., Guilloteau D., Besnard, J.-C., and Chalon, S. (1999). Prominent Role of n−3 Polyunsaturated Fatty Acids in Cortical Dopamine Metabolism, Nutr. Neurosci. 2, 257–265.

    CAS  Google Scholar 

  22. Zimmer, L., Delpal, S., Guilloteau, D., Aïoun, J., Durand, G., and Chalon, S. (2000) Chronic n−3 Polyunsaturated Fatty Acid Deficiency Alters Dopamine Vesicle Density in the Rat Frontal Cortex, Neurosci. Lett. 284, 25–28.

    Article  PubMed  CAS  Google Scholar 

  23. King, D., and Finlay, J.M. (1995) Effects of Selective Dopamine Depletion in Medial Prefrontal Cortex on Basal and Evoked Extracellular Dopamine in Neostriatum, Brain Res. 10, 117–128.

    Article  Google Scholar 

  24. King, D., Zigmond, M.J., and Finlay, J.M. (1997) Effects of Dopamine Depletion in the Medial Prefrontal Cortex on the Stress-Induced Increase in Extracellular Dopamine in the Nucleus Accumbens Core and Shell, Neuroscience 77, 141–153.

    Article  PubMed  CAS  Google Scholar 

  25. Salamone, J.D., Cousins, M.S., McCullough, L.D., Carriero, D.L., and Berkowitz, R.J. (1994) Nucleus Accumbens Dopamine Release Increases During Instrumental Lever Pressing for Food but Not Free Food Consumption, Pharmacol. Biochem. Behav. 49, 25–31.

    Article  PubMed  CAS  Google Scholar 

  26. Salamone, J.D. (1996) The Behavioral Neurochemistry of Motivation: Methodological and Conceptual Issues in Studies of the Dynamic Activity of Nucleus Accumbens Dopamine, J. Neurosci. Methods 64, 137–149.

    Article  PubMed  CAS  Google Scholar 

  27. Reisbick, S., and Neuringer, M. (1997) Omega-3 Fatty Acid Deficiency and Behavior: A Critical Review and Directions for Future Research, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology (Yehuda, S., and Mostofsky, D.I., eds.) pp. 397–425, Humana Press, Totowa, NJ.

    Google Scholar 

  28. Civelli, O., Bunzow, J.R., Grandy, D.K., Zhou, Q.Y., and Van Tol, H.H. (1991) Molecular Biology of the Dopamine Receptors, Eur. J. Pharmacol. 207, 277–286.

    Article  PubMed  CAS  Google Scholar 

  29. Vallone, D., Picetti, R., and Borrelli, E. (2000) Structure and Function of Dopamine Receptors, Neurosci. Biobehav. Rev. 24, 125–132.

    Article  PubMed  CAS  Google Scholar 

  30. Giros, B., Jaber, M., Jones, S.R., Wightman, R.M., and Caron, M.G. (1996) Hyperlocomotion and Indifference to Cocaine and Amphetamine in Mice Lacking the Dopamine Transporter, Nature 379, 606–612.

    Article  PubMed  CAS  Google Scholar 

  31. Uhl, G.R., Walther, D., Mash, D., Faucheux, B., and Javoy-Agid, F. (1994) Dopamine Transporter Messenger RNA in Parkinson's Disease and Control Substantia Nigra Neurons, Ann. Neurol. 35, 494–498.

    Article  PubMed  CAS  Google Scholar 

  32. Russell, V., de Villiers, A.S., Sagvolden, T., Lamm, M., and Taljaard, J. (1998) Differences Between Electrically-, Ritalin-and d-Amphetamine-Stimulated Release of [3H]Dopamine from Brain Slices Suggest Impaired Vesicular Storage of Dopamine in an Animal Model of Attention-Deficit Hyperactivity Disorder, Behav. Brain Res. 94, 163–171.

    Article  PubMed  CAS  Google Scholar 

  33. Spector, A.A. (1989) Polyunsaturated Fatty Acids and Membrane Function, in Biomembrane and Nutrition (Leger, C.L., and Bereziat, G., eds.), Vol. 195, pp. 11–20, Colloque INSERM, Paris.

  34. Zérouga, M., Beauge, F., Niel, E., Durand, G., and Bourre, J.-M. (1991) Interactive Effects of Dietary (n−3) Polyunsaturated Fatty Acids and Chronic Ethanol Intoxication on Synaptic Membrane Lipid Composition and Fluidity in Rats, Biochim. Biophys. Acta 1086, 295–304.

    PubMed  Google Scholar 

  35. Suzuki, H., Park, S.J., Tamura, M., and Ando, S. (1998) Effect of the Long-Term Feeding of Dietary Lipids on the Learning Ability, Fatty Acid Composition of Brain Stem Phospholipids and Synaptic Membrane Fluidity in Adult Mice: A Comparison of Sardine Oil Diet with Palm Oil Diet, Mech. Ageing Dev. 101, 119–128.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida, S., Yasuda, A., Kawazato, K., Sakai, K., Shimada, T., Takeshita, M., Yuasa, S., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Synaptic Vesicle Ultrastructural Changes in the Rat Hippocampus Induced by a Combination of Alpha-Linolenate Deficiency and a Learning Task, J. Neurochem. 68, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  37. Murphy, M.G. (1990) Dietary Fatty Acids and Membrane Protein Function, J. Nutr. Biochem. 1, 68–79.

    Article  PubMed  CAS  Google Scholar 

  38. Sessler, A.A., and Ntambi, J.M. (1998) Polyunsaturated Fatty Acid Regulation of Gene Expression, J. Nutr. 128, 923–926.

    PubMed  CAS  Google Scholar 

  39. Raclot, T., and Oudart, H. (1999) Selectivity of Fatty Acids on Lipid Metabolism and Gene Expression, Proc. Nutr. Soc. 58, 633–646.

    Article  PubMed  CAS  Google Scholar 

  40. Holman, R.T. (1997) ω3 and ω6 Essential Fatty Acid Status in Human Health and Disease, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology, (Yehuda, S., and Mostofsky, D.I., eds.) pp. 139–182, Human Press, Totowa, NJ.

    Google Scholar 

  41. Farooqui, A.A., Rosenberger, T.A., and Horrocks, L.A. (1997) Arachidonic Acid, Neurotrauma, and Neurodegenerative Diseases, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology (Yehuda, S., and Mostofsky, D.I., eds.), pp. 277–295, Humana Press, Totowa, NJ.

    Google Scholar 

  42. Davis, K.L., Kahn, R.S., Ko, G., and Davidson, M. (1991) Dopamine in Schizophrenia: A Review and Reconceptualization, Am. J. Psychiatry 148, 1474–1486.

    PubMed  CAS  Google Scholar 

  43. Moore, H., West, A.R., and Grace, A.A. (1999) The Regulation of Forebrain Dopamine Transmission: Relevance to the Patho-physiology and Psychopathology of Schizophrenia, Biol. Psychiatry 46, 40–55.

    Article  PubMed  CAS  Google Scholar 

  44. Carlsson, A., Hansson, L.O., Waters, N., and Carlsson, M.L. (1999) A Glutamatergic Deficiency Model of Schizophrenia, Br. J. Psychiatry 174, 2–6.

    Google Scholar 

  45. Horrobin, D.F., Manku, M.S., Morse-Fisher, N., Vaddadi, K.S., Courtney, P., Glen, A.I.M., Glen, E., Spellman, M., and Bates, C. (1989) Essential Fatty Acids in Plasma Phospholipids in Schizophrenics, Biol. Psychiatry 25, 562–568.

    Article  PubMed  CAS  Google Scholar 

  46. Kaiya, H., Horrobin, D.F., Manku, M.S., and Morse-Fisher, N. (1991) Essential and Other Fatty Acids in Schizophrenic Individuals from Japan, Biol. Psychiatry 30, 357–362.

    Article  PubMed  CAS  Google Scholar 

  47. Glen, A.I.M., Glen, E.M.T., Horrobin, D.F., Vaddadi, K.S., Spellman, M., Morse-Fisher, N., Ells, K., and Shinner, F.S. (1994) A Red Cell Membrane Abnormality in a Subgroup of Schizophrenic Patients: Evidence of Two Diseases, Schizophr. Res. 12, 53–61.

    Article  PubMed  CAS  Google Scholar 

  48. Peet, M., Laugharne, J.D., Horrobin, D.F., and Reynolds, G.P. (1994) Arachidonic Acid: A Common Link in the Biology of Schizophrenia, Arch. Gen. Psychiatry 51, 665–666.

    PubMed  CAS  Google Scholar 

  49. Peet, M., Laugharne, J.D., Rangarajan, N., Horrobin, D., and Reynolds, G. (1995) Depleted Red Cell Membrane Essential Fatty Acids in Drug-Treated Schizophrenic Patients, J. Psychiatr. Res. 29, 227–232.

    Article  PubMed  CAS  Google Scholar 

  50. Horrobin, D.F., Glen, A.I.M., and Vaddadi, K. (1994) The Membrane Hypothesis of Schizophrenia, Schizophr Res. 13, 195–207.

    Article  PubMed  CAS  Google Scholar 

  51. Horrobin, D.F. (1997) Fatty Acids, Phospholipids, and Schizophrenia, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology (Yehuda, S., and Mostofsky, D.I., eds.), pp. 245–256, Humana Press, Totowa, NJ.

    Google Scholar 

  52. Horrobin D.F. (1998) The Membrane Phospholipid Hypothesis as a Biochemical Basis for the Neurodevelopmental Concept of Schizophrenia, Schizophr Res. 30, 193–208.

    Article  PubMed  CAS  Google Scholar 

  53. Mellor, J., Laugharne, J.D., and Peet, M. (1995) Schizophrenic Symptom and Dietary Intake of n−3 Fatty, Acids, Schizophr. Res. 18, 85–86.

    Article  PubMed  CAS  Google Scholar 

  54. Peet, M., Laugharne, J.D., Mellor, J., and Ramchand, C.N. (1996) Essential Fatty Acid Deficiency in Erythrocyte Membranes from Chronic Schizophrenic Patients, and the Clinical Effects of Dietary Supplementation, Prostaglandins Leukot. Essent. Fatty Acids 55, 71–75.

    Article  PubMed  CAS  Google Scholar 

  55. Fenton, W.S., Hibbeln, J., and Knable, M. (2000) Essential Fatty Acids, Lipid Membrane Abnormalities, and the Diagnosis and Treatment of Schizophrenia, Biol. Psychiatry 47, 8–21.

    Article  PubMed  CAS  Google Scholar 

  56. Meltzer, H.Y. (1990) Role of Serotonin in Depression, Ann. NY Acad. Sci. 600, 486–499.

    PubMed  CAS  Google Scholar 

  57. Hibbeln, J.R., and Salem, N. (1995) Dietary Polyunsaturated Fatty Acids and Depression: When Cholesterol Does Not Satisfy, Am. J. Clin. Nutr. 62, 1–9.

    PubMed  CAS  Google Scholar 

  58. Adams, P.B., Lawson, S., Sanigorski, A., and Sinclair, A.J. (1996) Arachidonic Acid to Eicosapentaenoic Acid Ratio in Blood Correlates Positively with Clinical Symptoms of Depression, Lipids 31, S157-S161.

    PubMed  CAS  Google Scholar 

  59. Peet, M., Murphy, B., Shay, J., and Horrobin, D.F. (1998) Depletion of Omega-3 Fatty Acid Levels in Red Blood Cell Membranes of Depressive Patients, Biol. Psychiatry 43, 315–319.

    Article  PubMed  CAS  Google Scholar 

  60. Edwards, R., Peet, M., Shay, J., and Horrobin, D.F. (1998) Omega-3 Polyunsaturated Fatty Acid Levels in the Diet and in Red Blood Cell Membranes of Depressed Patients, J. Affect. Disord. 48, 149–155.

    Article  PubMed  CAS  Google Scholar 

  61. Maes, M., Christophe, A., Delanghe, J., Altamura, C., Neels, H., and Meltzer, H.Y. (1999) Lovered Omega 3 Polyunsaturated Fatty Acids in Serum Phospholipids and Cholesteryl Esters of Depressed Patients, Psychiatry Res. 85, 275–291.

    Article  PubMed  CAS  Google Scholar 

  62. Castellanos, F.X. (1997) Toward a Pathophysiology of Attention-Deficit/Hyperactivity Disorder, Clin. Pediatr. 36, 381–393.

    CAS  Google Scholar 

  63. Dougherty, D.D., Bonab, A.A., Spencer, T.J., Rauch, S.L., Madras, B.K., and Fischman, A.J. (1999) Dopamine Transporter Density in Patients with Attention Deficit Hyperactivity Disorder, Lancet 354, 2132–2133.

    Article  PubMed  CAS  Google Scholar 

  64. Swanson, J.M., Flodman, P., Kennedy, J., Spence, M.A., Moyzis, R., Schuck, S., Murias, M., Moriarity, J., Barr, C., Smith, M., and Posner, M. (2000) Dopamine Genes and ADHD, Neurosci. Biobehav. Res. 24, 21–25.

    Article  CAS  Google Scholar 

  65. Krause, K.-H., Dresel, S.H., Krause, J., Kung, H.F., and Tatsch K. (2000) Increased Striatal Dopamine Transporter in Adult Patients with Attention Deficit Hyperactivity Disorder: Effects of Methylphenidate as Measured by Single Photon Emission Computed Tomography, Neurosci. Lett. 285, 107–110.

    Article  PubMed  CAS  Google Scholar 

  66. Mitchell, E.A., Aman, M.G., Turbott, S.H., and Manku, M. (1987) Clinical Characteristics and Serum Essential Fatty Acid Levels in Hyperactive Children, Clin. Pediatr. 26, 406–411.

    CAS  Google Scholar 

  67. Stevens, L.J., Zentall, S.S., Deck, J.L., Abate, M.L., Watkins, B.A., Lipp, S.R., and Burgess, J.R. (1995) Essential Fatty Acid Metabolism in Boys with Attention-Deficit Hyperactivity Disorder, Am. J. Clin. Nutr. 62, 761–768.

    PubMed  CAS  Google Scholar 

  68. Stevens, L.J., Zentall, S.S., Abate, M.L., Kuczek, T., and Burgess, J.R. (1996) Omega-3 Fatty Acid in Boys with Behavior, Learning, and Health Problems, Physiol. Behav. 59, 915–920.

    Article  PubMed  CAS  Google Scholar 

  69. Burgess, J.R., Stevens, L., Zhang, W., and Peck L. (2000) Long-Chain Polyunsaturated Fatty Acids in Children with Attention-Deficit Hyperactivity Disorder, Am. J. Clin. Nutr. 71 (Suppl.), 327S-330S.

    PubMed  CAS  Google Scholar 

  70. Söderberg, M., Edlund, C., Alafuzoff, I., Kristensson, K., and Dallner, G. (1992) Lipid Composition in Different Regions of the Brain in Alzheimers Disease/Senile Dementia of Alzheimer's Type, J. Neurochem. 59, 1646–1653.

    Article  PubMed  Google Scholar 

  71. Prasad, M.R., Lovell, M.A., Yatin, M., Dhillon, H., and Markesbery, W.R. (1998) Regional Membrane Phospholipids Alterations in Alzheimer's Disease, Neurochem. Res. 23, 81–88.

    Article  PubMed  CAS  Google Scholar 

  72. Horrobin, D.F., Manku, M.S., Hillman, H., Iain, A., and Glen, M. (1991) Fatty Acid Levels in the Brain of Schizophrenics and Normal Controls, Biol. Psychiatry 30, 795–805.

    Article  PubMed  CAS  Google Scholar 

  73. Yao, J.K., Leonard, S., and Reddy, R.D. (2000) Membrane Phospholipids Abnormalities in Postmortem Brains from Schizophrenic Patients, Schizophr. Res. 42, 7–17.

    Article  PubMed  CAS  Google Scholar 

  74. Bourre, J.-M., Bonneil, M., Dumont, O., Piciotti, M., Nalbone, G., and Lafont H. (1988) High Dietary Fish Oil Alters the Brain Polyunsaturated Fatty Acid Composition, Biochim. Biophys. Acta 960, 458–461.

    PubMed  CAS  Google Scholar 

  75. Bourre, J.-M., François, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1990) Effect of Increasing Amounts of Dietary Fish Oil on Brain and Liver Fatty Acid Coposition, Biochim. Biophys. Acta 1043, 149–152.

    PubMed  CAS  Google Scholar 

  76. Yonekubo, A., Honda, S., Okano, M., Takahashi, K., and Yamamoto, Y. (1994) Effects of Dietary Fish Oil During the Fetal and Postnatal Periods on the Learning Ability of Postnatal Rats, Biosci. Biotechnol. Biochem. 58, 799–801.

    Article  CAS  Google Scholar 

  77. Jensen, M.M., Slarsfeldt T., and Høy, C.-E. (1996) Correlation Between Level of (n−3) Polyunsaturated Fatty Acids in Brain Phospholipids and Learning Ability in Rats. A Multiple Generation Study, Biochim. Biophys. Acta 1300, 203–209.

    PubMed  Google Scholar 

  78. Okaniwa, Y., Yuasa, S., Yamamoto, N., Watanabe, S., Kobayashi, T., Okuyama, H., Nomura, M., and Nagata, Y. (1996) A High Linoleate and a High α-Linolenate Diet Induced Changes in Learning Behavior of Rats. Effects of a Shift in Diets and Reversal of Training Stimuli, Biol. Pharm. Bull. 19, 536–540.

    PubMed  CAS  Google Scholar 

  79. Chalon, S., Delion-Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A.-M., Besnard J.-C., and Durand, G. (1998) Dietary Fish Oil Induces Changes in Monoaminergic Neurotransmission and Behavior in Rats, J. Nutr. 128, 2512–2519.

    PubMed  CAS  Google Scholar 

  80. Yehuda, S., and Carasso, R.L. (1993) Modulation of Learning, Pain Thresholds, and Thermoregulation in the Rat by Preparations of Free Purified α-Linolenic and Linoleic Acids: Determination of the Optimal ω3-to-ω6 Ratio, Proc. Natl. Acad. Sci. USA 90, 10345–10349.

    Article  PubMed  CAS  Google Scholar 

  81. Youyou, A., Durand, G., Pascal, G., Piciotti, M., Dumont, O., and Bourre, J.-M. (1986) Recovery of Altered Fatty Acid Composition Induced by a Diet Devoid of n−3 Fatty Acids in Myelin, Synaptosomes, Mitochondria, and Microsomes of Developing Rat Brain, J. Neurochem 46, 224–228.

    PubMed  CAS  Google Scholar 

  82. Carrié, I., Clémént, M., De Javel, D., Francès, H., and Bourre, J.-M. (2000) Phospholipid Supplementation Reverses Behavioral and Biochemical Alterations Induced by n−3 Polyunsaturated Fatty Acid Deficiency in Mice, J. Lipid Res. 41, 473–480.

    PubMed  Google Scholar 

  83. Hamano, H., Nabekura, J., Nishikawa, M., and Ogawa, T. (1996) Docosahexaenoic Acid Reduces GABA Response in Substantia Nigra Neuron of Rat, J. Neurophysiol. 75, 1264–1270.

    PubMed  CAS  Google Scholar 

  84. Minami M., Kimura, S., Endo, T., Hamaue, N., Hirafuji, M., Togashi, H., Matsumoto, M., Yoshioka, M., Saito, H., Watanabe, S., Kobayashi, T., and Okuyama, H. (1997) Dietary Docosahexaenoic Acid Increases Cerebral Acetylcholine Levels and Improves Passive Avoidance Performance in Stroke-Prone Spontaneously Hypertensive Rats, Pharmacol. Biochem. Behav. 58, 1123–1129.

    Article  PubMed  CAS  Google Scholar 

  85. Yehuda, S., Rabinovitz, S., Carasso, R.L., and Mostofsky, D.I. (1997) Fatty Acids and Brain Peptides, Peptides 19, 407–419.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Chalon.

About this article

Cite this article

Chalon, S., Vancassel, S., Zimmer, L. et al. Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids 36, 937–944 (2001). https://doi.org/10.1007/s11745-001-0804-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0804-7

Keywords

Navigation