Skip to main content
Log in

Solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats

  • Articles
  • Published:
Lipids

Abstract

Intestinal absorption of various plant sterols was investigated in thoracic duct-cannulated normal rats. Lymphatic recovery was the highest in campesterol, intermediate in brassicasterol and sitosterol, and the lowest in stigmasterol and sitostanol. Higher solubility in the bile salt micelle was observed in sitosterol, campesterol, and sitostanol than in brassicasterol and stigmasterol. The solubility of the latter two sterols was extremely low. When the affinity of plant sterols for the bile salt micelle was compared in an in vitro model system, which assessed sterol transfer from the micellar to the oil phase, the transfer rate was the highest in brassicasterol, intermediate in campesterol and stigmasterol, and lowest in sitosterol and sitostanol. Although no significant correlations between lymphatic recovery of plant sterols and their micellar solubility or transfer rate from the bile salt micelle were observed, highly positive correlation was obtained between the lymphatic recovery and the multiplication value of the micellar solubility and the transfer rate. These observations strongly suggest that both solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABCG5:

ATP-binding cassette transporter G5

ABCG8:

ATP-binding cassette transporter G8

NPC1L1:

Niemann-Pick C1 Like 1 protein

References

  1. Katan, M.B., Grundy, S.M., Jones, P., Law, M., Miettinen, T., and Paoletti, R. (2003) Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels, Mayo Clin. Proc. 78, 965–978.

    PubMed  CAS  Google Scholar 

  2. Altmann, S.W., Davis, H.R., Zhu, L., Yao, X., Hoos, L.M., Tetzloff, G., Iyer, S.N., Maguire, M., Golovko, A., Zeng, M., Wang, L., Murgolo, N., and Graziano, M.P. (2004) Niemann-Pick C1 Like 1 Protein Is Critical for Intestinal Cholesterol Absorption, Science 303, 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  3. Davis, H.R., Zhu, L., Hoos, L.M., Tetzloff, G., Maguire, M., Liu, J., Yao, X., Iyer, S.N., Lam, M., Lund, E.G., Determs, P.A., Graziano, M.P., and Altmann, S.W. (2004) Niemann-Pick C1 Like 1 (NPC1L1) Is the Intestinal Phytosterol and Cholesterol Transporter and a Key Modulator of Whole-Body Cholesterol Homeostasis, J. Biol. Chem. 279, 33586–33592.

    Article  PubMed  CAS  Google Scholar 

  4. Lu, K., Lee, M.-H., and Patel, S.B. (2001) Dietary Cholesterol Absorption; More Than Just Bile, Trends Endocrinol. Metab. 12, 314–320.

    Article  PubMed  CAS  Google Scholar 

  5. Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R., and Hobbs, H.H. (2000) Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters, Science 290, 1771–1775.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, M.-H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., Srivastava, A.K., Salen, G., Dean, M., and Patel, S.B. (2001) Identification of a Gene, ABCG5, Important in the Regulation of Dietary Cholesterol Absorption, Nature Genet. 27, 79–83.

    Article  PubMed  CAS  Google Scholar 

  7. Yu, L., Hammer, R.E., Li-Hawkins, J., Bergmann, K., Lütjohann, D., Cohen, J.C., and Hobbs, H.H. (2002) Disruption of Abcg5 and Abcg8 in Mice Reveals Their Crucial Role in Biliary Cholesterol Secretion, Proc. Natl. Acad. Sci. USA 99, 16237–16242.

    Article  PubMed  CAS  Google Scholar 

  8. Yu, L., Bergmann, K., Lütjohann, D., Hobbs, H.H., and Cohen, J.C. (2005) Ezetimibe Normalizes Metabolic Defects in Mice Lacking ABCG5 and ABCG8, J. Lipid Res. 46, 1739–1744.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda, I., Tanaka, K., Sugano, M., Vahouny, G.V., and Gallo, L.L. (1988) Discrimination Between Cholesterol and Sitosterol for Absorption in Rats, J. Lipid Res. 29, 1583–1591.

    PubMed  CAS  Google Scholar 

  10. Ros, E. (2000) Intestinal Absorption of Triglyceride and Cholesterol. Dietary and Pharmacological Inhibition to Reduce Cardiovascular Risk, Atherosclerosis 151, 357–379.

    Article  PubMed  CAS  Google Scholar 

  11. Ikeda, I., and Sugano, M. (1983) Some Aspects of Mechanism of Inhibition of Cholesterol Absorption by β-Sitosterol, Biochim. Biophys. Acta 732, 651–658.

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong, M.J., and Carey, M.C. (1987) Thermodynamic and Molecular Determinants of Sterol Solubilities in Bile Salt Micelles. J. Lipid Res. 28, 1144–1155.

    PubMed  CAS  Google Scholar 

  13. Ikeda, I., Matsuoka, R., Hamada, T., Mitsui, K., Imabayashi, S., Uchino, A., Sato, M., Kuwano, E., Itamura, T., Yamada, K., Tanaka, K., and Imaizumi, K. (2002) Cholesterol Esterase Accelerates Intestinal Cholesterol Absorption, Biochim. Biophys. Acta 1571, 34–44.

    PubMed  CAS  Google Scholar 

  14. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  15. Sugano, M., Morioka, H., and Ikeda, I. (1977) A Comparison of Hypocholesterolemic Activity of β-Sitosterol and β-Sitostanol in Rats, J. Nutr. 107, 2011–2019.

    PubMed  CAS  Google Scholar 

  16. Ikeda, I., and Sugano, M. (1978) Comparison of Absorption and Metabolism of β-Sitosterol and β-Sitostanol in Rats, Atherosclerosis 30, 227–237.

    Article  PubMed  CAS  Google Scholar 

  17. Hassan, A.S., and Rampone, A.J. (1979) Intestinal Absorption and Lymphatic Transport of Cholesterol and β-Sitostanol in the Rat, J. Lipid Res. 20, 646–653.

    PubMed  CAS  Google Scholar 

  18. Subbiah, M.T.R. (1973) Dietary Plant Sterols: Current Status in Human and Animal Sterol Metabolism, Am. J. Clin. Nutr. 26, 219–225.

    PubMed  CAS  Google Scholar 

  19. Borgström, B. (1968) Quantitative Aspects of the Intestinal Absorption and Metabolism of Cholesterol and β-Sitosterol in the Rat, J. Lipid Res. 9, 473–481.

    PubMed  Google Scholar 

  20. Sylvén, C., and Borgström, B. (1969) Absorption and Lymphatic Transport of Cholesterol and Sitosterol in the Rat, J. Lipid Res. 10, 179–182.

    PubMed  Google Scholar 

  21. Salen, G., Ahrens, E.H., and Grundy, S.M. (1970) Metabolism of β-Sitosterol in Man, J. Clin. Invest. 49, 952–967.

    PubMed  CAS  Google Scholar 

  22. Lütjohann, D., Björkhem, I., Beil, U.F., and Bergmann, K. (1995) Sterol Absorption and Sterol Balance in Phytosterolemia Evaluated by Deuterium-Labeled Sterols: Effect of Sitostanol Treatment, J. Lipid Res. 36, 1763–1773.

    PubMed  Google Scholar 

  23. Heinemann, T., Axtmann, G., and Bergmann, K. (1993) Comparison of Intestinal Absorption of Cholesterol with Different Plant Sterols in Man, Eur. J. Clin. Invest. 23, 827–831.

    PubMed  CAS  Google Scholar 

  24. Bhattacharyya, A.K. (1981) Uptake and Esterification of Plant Sterols by Rat Small Intestine, Am. J. Physiol. 240, G50-G55.

    PubMed  CAS  Google Scholar 

  25. Vahouny, G.V., Connor, W.E., Subramaniam, S., Lin, D.S., and Gallo, L.L. (1983) Comparative Lymphatic Absorption of Sitosterol, Stigmasterol, and Fucosterol and Differential Inhibition of Cholesterol Absorption, Am. J. Clin. Nutr. 37, 805–809.

    PubMed  CAS  Google Scholar 

  26. Vahouny, G.V., Connor, W.E., Roy, T., Lin, D.S., and Gallo, L.L. (1981) Lymphatic Absorption of Shellfish Sterols and their Effects on Cholesterol Absorption, Am. J. Clin. Nutr. 34, 507–513.

    PubMed  CAS  Google Scholar 

  27. Gregg, R.E., Connor, W.E., Lin, D.S., and Brewer, H.B. (1986) Abnormal Metabolism of Shellfish Sterols in a Patient with Sitosterolemia and Xanthomatosis, J. Clin. Invest. 77, 1864–1872.

    PubMed  CAS  Google Scholar 

  28. Igel, M., Giesa, U., Lütjohann, D. and Bergmann, K. (2003) Comparison of the Intestinal Uptake of Cholesterol, Plant Sterols, and Stanols in Mice, J. Lipid Res. 44, 533–538.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadateru Hamada.

About this article

Cite this article

Hamada, T., Goto, H., Yamahira, T. et al. Solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats. Lipids 41, 551–556 (2006). https://doi.org/10.1007/s11745-006-5004-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5004-y

Keywords

Navigation