Skip to main content

Intestinal Digestion and Absorption

  • Chapter
  • First Online:
Bile Acids in Gastroenterology

Abstract

Bile acids are planar amphipathic molecules that have a polar and a nonpolar face. They are the end products of cholesterol metabolism and are called biological detergents. In the duodenum and upper jejunum, they participate in the digestion and absorption of lipids, including triacylglycerols, phospholipids, cholesterol, and fat-soluble vitamins. The formation of mixed micelles is the best-known property of bile acids, and the activation of pancreatic lipases is another important role. Triacylglycerols account for 90–95% of dietary lipids and are hydrolyzed to 2-monoacylglycerol and free fatty acids. Conjugated bile acids and phospholipids form mixed micelles with these hydrolysates of triacylglycerols, cholesterol, and fat-soluble vitamins. The mixed micelles effectively pass through the unstirred water layer overlying the microvillus border of the enterocytes, and all of the nutrients except for the conjugated bile acids are finally taken up by the cells. Conjugation of bile acids with glycine or taurine maintains water solubility at an acidic pH and prevents nonionic passive absorption from the proximal small intestine, which allows bile acids to be absorbed efficiently by an active transport system at the terminal ileum after the completion of their roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11:55–67. doi:10.1038/nrgastro.2013.151.

    Article  CAS  PubMed  Google Scholar 

  2. Hofmann AF. The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts. Biochem J. 1963;89:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hofmann AF. A physicochemical approach to the intraluminal phase of fat absorption. Gastroenterology. 1966;50:56–64.

    CAS  PubMed  Google Scholar 

  4. Friedman HI, Nylund B. Intestinal fat digestion, absorption, and transport. A review. Am J Clin Nutr. 1980;33:1108–39.

    CAS  PubMed  Google Scholar 

  5. Carey MC, Small DM, Bliss CM. Lipid digestion and absorption. Annu Rev Physiol. 1983;45:651–77. doi:10.1146/annurev.ph.45.030183.003251.

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65:2461–83. doi:10.1007/s00018-008-7568-6.

    Article  CAS  PubMed  Google Scholar 

  7. Carey MC, Small DM. Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch Intern Med. 1972;130:506–27.

    Article  CAS  PubMed  Google Scholar 

  8. Matoba N, Une M, Hoshita T. Identification of unconjugated bile acids in human bile. J Lipid Res. 1986;27:1154–62.

    CAS  PubMed  Google Scholar 

  9. Hofmann AF, Mysels KJ. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions. J Lipid Res. 1992;33:617–26.

    CAS  PubMed  Google Scholar 

  10. Ovesen L, Bendtsen F, Tage-Jensen U, Pedersen NT, Gram BR, Rune SJ. Intraluminal pH in the stomach, duodenum, and proximal jejunum in normal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology. 1986;90:958–62.

    Article  CAS  PubMed  Google Scholar 

  11. Hofmann AF, Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res. 1984;25:1477–89.

    CAS  PubMed  Google Scholar 

  12. Setchell KD, Heubi JE, Shah S, Lavine JE, Suskind D, Al-Edreesi M, et al. Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology. 2013;144:945–55 e6. quiz e14-5 doi:10.1053/j.gastro.2013.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. National Health and Nutrition Survey Japan 2013 Ministry of Health, Labour and Welfare, Japan. http://www.mhlw.go.jp/stf/houdou/0000067890.html/. Accessed 15 Dec 2015.

  14. Freedman MR, King J, Kennedy E. Popular diets: a scientific review. Obes Res. 2001;9(Suppl 1):1S–40S. doi:10.1038/oby.2001.113.

    Article  CAS  PubMed  Google Scholar 

  15. Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–27. doi:10.3390/nu2020116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001;6:D299–319.

    Article  CAS  PubMed  Google Scholar 

  17. Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab. 2009;296:E1183–94. doi:10.1152/ajpendo.90899.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verger R, Aoubala M, Carriere F, Ransac S, Dupuis L, De Caro J, et al. Regulation of lumen fat digestion: enzymic aspects. Proc Nutr Soc. 1996;55:5–18.

    Article  CAS  PubMed  Google Scholar 

  19. Hamosh M, Scanlon JW, Ganot D, Likel M, Scanlon KB, Hamosh P. Fat digestion in the newborn. Characterization of lipase in gastric aspirates of premature and term infants. J Clin Invest. 1981;67:838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abrams CK, Hamosh M, Lee TC, Ansher AF, Collen MJ, Lewis JH, et al. Gastric lipase: localization in the human stomach. Gastroenterology. 1988;95:1460–4.

    Article  CAS  PubMed  Google Scholar 

  21. Borgström B, Erlanson C. Pancreatic lipase and co-lipase. Interactions and effects of bile salts and other detergents. Eur J Biochem. 1973;37:60–8.

    Article  PubMed  Google Scholar 

  22. Hui DY, Howles PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res. 2002;43:2017–30.

    Article  CAS  PubMed  Google Scholar 

  23. Ganguly J. Biochemistry of vitamin A. Boca Raton: CRC Press, Inc.; 1989.

    Google Scholar 

  24. Thomson AB, Schoeller C, Keelan M, Smith L, Clandinin MT. Lipid absorption: passing through the unstirred layers, brush-border membrane, and beyond. Can J Physiol Pharmacol. 1993;71:531–55.

    Article  CAS  PubMed  Google Scholar 

  25. Porter HP, Saunders DR, Tytgat G, Brunser O, Rubin CE. Fat absorption in bile fistula man. A morphological and biochemical study. Gastroenterology. 1971;60:1008–19.

    CAS  PubMed  Google Scholar 

  26. Mansbach 2nd CM, Newton D, Stevens RD. Fat digestion in patients with bile acid malabsorption but minimal steatorrhea. Dig Dis Sci. 1980;25:353–62.

    Article  PubMed  Google Scholar 

  27. Scheig R. What is dietary fat? Am J Clin Nutr. 1969;22:651–3.

    CAS  PubMed  Google Scholar 

  28. Liao TH, Hamosh P, Hamosh M. Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res. 1984;18:402–9.

    Article  CAS  PubMed  Google Scholar 

  29. Paltauf F, Esfandi F, Holasek A. Stereospecificity of lipases. Enzymic hydrolysis of enantiomeric alkyl diacylglycerols by lipoprotein lipase, lingual lipase and pancreatic lipase. FEBS Lett. 1974;40:119–23.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen M, Morgan RG, Hofmann AF. Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology. 1971;60:1–15.

    CAS  PubMed  Google Scholar 

  31. Carriere F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105:876–88.

    Article  CAS  PubMed  Google Scholar 

  32. Gargouri Y, Julien R, Bois AG, Verger R, Sarda L. Studies on the detergent inhibition of pancreatic lipase activity. J Lipid Res. 1983;24:1336–42.

    CAS  PubMed  Google Scholar 

  33. Borgström B. Influence of bile salt, pH, and time on the action of pancreatic lipase; physiological implications. J Lipid Res. 1964;5:522–31.

    Google Scholar 

  34. Hofmann AF, Borgstrom B. Hydrolysis of long-chain monoglycerides in micellar solution by pancreatic lipase. Biochim Biophys Acta. 1963;70:317–31.

    Article  CAS  PubMed  Google Scholar 

  35. Lombardo D, Guy O. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim Biophys Acta. 1980;611:147–55.

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Yang Y, Braunstein E, Georgeson KE, Harmon CM. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Am J Physiol Endocrinol Metab. 2001;281:E916–23.

    CAS  PubMed  Google Scholar 

  37. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282:19493–501. doi:10.1074/jbc.M703330200.

    Article  CAS  PubMed  Google Scholar 

  38. Murota K, Storch J. Uptake of micellar long-chain fatty acid and sn-2-monoacylglycerol into human intestinal Caco-2 cells exhibits characteristics of protein-mediated transport. J Nutr. 2005;135:1626–30.

    CAS  PubMed  Google Scholar 

  39. Takeuchi H, Sekine S, Kojima K, Aoyama T. The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation. Asia Pac J Clin Nutr. 2008;17(Suppl 1):320–3.

    CAS  PubMed  Google Scholar 

  40. U.S. Department of Agriculture ARS. Nutrient intakes from foods: mean amounts consumed per individual, one day, 2011–2012 http://www.ars.usda.gov/Services/docs.htm?docid=18349 Accessed 15 Dec 2015.

  41. Bach AC, Babayan VK. Medium-chain triglycerides: an update. Am J Clin Nutr. 1982;36:950–62.

    CAS  PubMed  Google Scholar 

  42. Arnesjo B, Nilsson A, Barrowman J, Borgstrom B. Intestinal digestion and absorption of cholesterol and lecithin in the human. Intubation studies with a fat-soluble reference substance. Scand J Gastroenterol. 1969;4:653–65.

    Article  CAS  PubMed  Google Scholar 

  43. Richmond BL, Boileau AC, Zheng S, Huggins KW, Granholm NA, Tso P, et al. Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A2-deficient mice. Gastroenterology. 2001;120:1193–202. doi:10.1053/gast.2001.23254.

    Article  CAS  PubMed  Google Scholar 

  44. Tatulian SA. Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J. 2001;80:789–800. doi:10.1016/S0006-3495(01)76058-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arnesjo B, Grubb A. The activation, purification and properties of rat pancreatic juice phospholipase A 2. Acta Chem Scand. 1971;25:577–89.

    Article  CAS  PubMed  Google Scholar 

  46. Nalbone G, Lairon D, Charbonnier-Augeire M, Vigne JL, Leonardi J, Chabert C, et al. Pancreatic phospholipase A2 hydrolysis of phosphatidylcholines in various physicochemical states. Biochim Biophys Acta. 1980;620:612–25.

    Article  CAS  PubMed  Google Scholar 

  47. van den Bosch H, Postema NM, de Haas GH, van Deenen LL. On the positional specificity of phospholipase A from pancreas. Biochim Biophys Acta. 1965;98:657–9.

    Article  PubMed  Google Scholar 

  48. Ottolenghi A. Estimation and subcellular distribution of lecithinase activity in rat intestinal mucosa. J Lipid Res. 1964;5:532–7.

    CAS  PubMed  Google Scholar 

  49. Subbaiah PV, Ganguly J. Studies on the phospholipases of rat intestinal mucosa. Biochem J. 1970;118:233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gassama-Diagne A, Fauvel J, Chap H. Purification of a new, calcium-independent, high molecular weight phospholipase A2/lysophospholipase (phospholipase B) from guinea pig intestinal brush-border membrane. J Biol Chem. 1989;264:9470–5.

    CAS  PubMed  Google Scholar 

  51. Le Kim D, Betzing H. Intestinal absorption of polyunsaturated phosphatidylcholine in the rat. Hoppe Seylers Z Physiol Chem. 1976;357:1321–31.

    Article  CAS  PubMed  Google Scholar 

  52. Reynier MO, Lafont H, Crotte C, Sauve P, Gerolami A. Intestinal cholesterol uptake: comparison between mixed micelles containing lecithin or lysolecithin. Lipids. 1985;20:145–50.

    Article  CAS  PubMed  Google Scholar 

  53. Homan R, Hamelehle KL. Phospholipase A2 relieves phosphatidylcholine inhibition of micellar cholesterol absorption and transport by human intestinal cell line Caco-2. J Lipid Res. 1998;39:1197–209.

    CAS  PubMed  Google Scholar 

  54. Erlanson C. Purification, properties, and substrate specificity of a carboxylesterase in pancreatic juice. Scand J Gastroenterol. 1975;10:401–8.

    CAS  PubMed  Google Scholar 

  55. Blackberg L, Lombardo D, Hernell O, Guy O, Olivecrona T. Bile salt-stimulated lipase in human milk and carboxyl ester hydrolase in pancreatic juice: are they identical enzymes? FEBS Lett. 1981;136:284–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lombardo D, Campese D, Multigner L, Lafont H, De Caro A. On the probable involvement of arginine residues in the bile-salt-binding site of human pancreatic carboxylic ester hydrolase. Eur J Biochem. 1983;133:327–33.

    Article  CAS  PubMed  Google Scholar 

  57. Blackberg L, Hernell O. Bile salt-stimulated lipase in human milk. Evidence that bile salt induces lipid binding and activation via binding to different sites. FEBS Lett. 1993;323:207–10.

    Article  CAS  PubMed  Google Scholar 

  58. Gjellesvik DR, Lorens JB, Male R. Pancreatic carboxylester lipase from Atlantic salmon (Salmo salar). cDNA sequence and computer-assisted modelling of tertiary structure. Eur J Biochem. 1994;226:603–12.

    Article  CAS  PubMed  Google Scholar 

  59. Liang Y, Medhekar R, Brockman HL, Quinn DM, Hui DY. Importance of arginines 63 and 423 in modulating the bile salt-dependent and bile salt-independent hydrolytic activities of rat carboxyl ester lipase. J Biol Chem. 2000;275:24040–6. doi:10.1074/jbc.M003187200.

    Article  CAS  PubMed  Google Scholar 

  60. Yao L, Heubi JE, Buckley DD, Fierra H, Setchell KD, Granholm NA, et al. Separation of micelles and vesicles within lumenal aspirates from healthy humans: solubilization of cholesterol after a meal. J Lipid Res. 2002;43:654–60.

    CAS  PubMed  Google Scholar 

  61. Grundy SM. Absorption and metabolism of dietary cholesterol. Annu Rev Nutr. 1983;3:71–96. doi:10.1146/annurev.nu.03.070183.000443.

    Article  CAS  PubMed  Google Scholar 

  62. Swell L, Flick DF, Field Jr H, Treadwell CR. Influence of dietary bile salts on blood cholesterol levels. Proc Soc Exp Biol Med. 1953;84:428–31.

    Article  CAS  PubMed  Google Scholar 

  63. Gallo-Torres HE, Miller ON, Hamilton JG. Further studies on the role of bile salts in cholesterol esterification and absorption from the gut. Arch Biochem Biophys. 1971;143:22–36.

    Article  CAS  PubMed  Google Scholar 

  64. Watt SM, Simmonds WJ. The specificity of bile salts in the intestinal absorption of micellar cholesterol in the rat. Clin Exp Pharmacol Physiol. 1976;3:305–22.

    Article  CAS  PubMed  Google Scholar 

  65. Ponz de Leon M, Loria P, Iori R, Carulli N. Cholesterol absorption in cirrhosis: the role of total and individual bile acid pool size. Gastroenterology. 1981;80:1428–37.

    CAS  PubMed  Google Scholar 

  66. Cohen BI, Raicht RF, Mosbach EH. Sterol metabolism studies in the rat. Effects of primary bile acids (sodium taurochenodeoxycholate and sodium taurocholate) on sterol metabolism. J Lipid Res. 1977;18:223–31.

    CAS  PubMed  Google Scholar 

  67. Reynier MO, Montet JC, Gerolami A, Marteau C, Crotte C, Montet AM, et al. Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. J Lipid Res. 1981;22:467–73.

    CAS  PubMed  Google Scholar 

  68. Watt SM, Simmonds WJ. Effects of four taurine-conjugated bile acids on mucosal uptake and lymphatic absorption of cholesterol in the rat. J Lipid Res. 1984;25:448–55.

    CAS  PubMed  Google Scholar 

  69. Altmann SW, Davis Jr HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–4. doi:10.1126/science.1093131.

    Article  CAS  PubMed  Google Scholar 

  70. Altmann SW, Davis Jr HR, Yao X, Laverty M, Compton DS, Zhu LJ, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta. 2002;1580:77–93.

    Article  CAS  PubMed  Google Scholar 

  71. Bietrix F, Yan D, Nauze M, Rolland C, Bertrand-Michel J, Comera C, et al. Accelerated lipid absorption in mice overexpressing intestinal SR-BI. J Biol Chem. 2006;281:7214–9. doi:10.1074/jbc.M508868200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001;27:79–83. doi:10.1038/83799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vrins C, Vink E, Vandenberghe KE, Frijters R, Seppen J, Groen AK. The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett. 2007;581:4616–20. doi:10.1016/j.febslet.2007.08.052.

    Article  CAS  PubMed  Google Scholar 

  74. Tachibana S, Hirano M, Hirata T, Matsuo M, Ikeda I, Ueda K, et al. Cholesterol and plant sterol efflux from cultured intestinal epithelial cells is mediated by ATP-binding cassette transporters. Biosci Biotechnol Biochem. 2007;71:1886–95.

    Article  CAS  PubMed  Google Scholar 

  75. Johnson BJ, Lee JY, Pickert A, Urbatsch IL. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry. 2010;49:3403–11. doi:10.1021/bi902064g.

    Article  CAS  PubMed  Google Scholar 

  76. van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P, Williams DL, et al. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry. 2005;44:4517–25. doi:10.1021/bi0484320.

    Article  PubMed  Google Scholar 

  77. Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM, Vonlehmden SB, et al. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology. 2006;131:1197–207. doi:10.1053/j.gastro.2006.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. von Bonsdorff-Nikander A, Christiansen L, Huikko L, Lampi AM, Piironen V, Yliruusi J, et al. A comparison of the effect of medium- vs. long-chain triglycerides on the in vitro solubilization of cholesterol and/or phytosterol into mixed micelles. Lipids. 2005;40:181–90.

    Article  Google Scholar 

  79. Klingberg S, Andersson H, Mulligan A, Bhaniani A, Welch A, Bingham S, et al. Food sources of plant sterols in the EPIC Norfolk population. Eur J Clin Nutr. 2008;62:695–703. doi:10.1038/sj.ejcn.1602765.

    Article  CAS  PubMed  Google Scholar 

  80. Valsta LM, Lemstrom A, Ovaskainen ML, Lampi AM, Toivo J, Korhonen T, et al. Estimation of plant sterol and cholesterol intake in Finland: quality of new values and their effect on intake. Br J Nutr. 2004;92:671–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ostlund Jr RE, McGill JB, Zeng CM, Covey DF, Stearns J, Stenson WF, et al. Gastrointestinal absorption and plasma kinetics of soy Delta(5)-phytosterols and phytostanols in humans. Am J Physiol Endocrinol Metab. 2002;282:E911–6. doi:10.1152/ajpendo.00328.2001.

    Article  CAS  PubMed  Google Scholar 

  82. Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res. 2011;52:1885–926. doi:10.1194/jlr.R017855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegard L, Jessup W, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232:346–60. doi:10.1016/j.atherosclerosis.2013.11.043.

    Article  CAS  PubMed  Google Scholar 

  84. Nissinen M, Gylling H, Vuoristo M, Miettinen TA. Micellar distribution of cholesterol and phytosterols after duodenal plant stanol ester infusion. Am J Physiol Gastrointest Liver Physiol. 2002;282:G1009–15. doi:10.1152/ajpgi.00446.2001.

    Article  CAS  PubMed  Google Scholar 

  85. Ikeda I. Factors affecting intestinal absorption of cholesterol and plant sterols and stanols. J Oleo Sci. 2015;64:9–18. doi:10.5650/jos.ess14221.

    Article  CAS  PubMed  Google Scholar 

  86. De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res. 2012;56:1058–72. doi:10.1002/mnfr.201100722.

    Article  CAS  PubMed  Google Scholar 

  87. Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients. 2013;5:3563–81. doi:10.3390/nu5093563.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Isken A, Golczak M, Oberhauser V, Hunzelmann S, Driever W, Imanishi Y, et al. RBP4 disrupts vitamin A uptake homeostasis in a STRA6-deficient animal model for Matthew-Wood syndrome. Cell Metab. 2008;7:258–68. doi:10.1016/j.cmet.2008.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, Sargsyan A, et al. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). J Biol Chem. 2013;288:1250–65. doi:10.1074/jbc.M112.369132.

    Article  CAS  PubMed  Google Scholar 

  90. Goncalves A, Gontero B, Nowicki M, Margier M, Masset G, Amiot MJ, et al. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. J Lipid Res. 2015;56:1123–33. doi:10.1194/jlr.M057612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reboul E, Klein A, Bietrix F, Gleize B, Malezet-Desmoulins C, Schneider M, et al. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J Biol Chem. 2006;281:4739–45. doi:10.1074/jbc.M509042200.

    Article  CAS  PubMed  Google Scholar 

  92. Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol. 2008;74:42–9. doi:10.1124/mol.107.043034.

    Article  CAS  PubMed  Google Scholar 

  93. Reboul E, Soayfane Z, Goncalves A, Cantiello M, Bott R, Nauze M, et al. Respective contributions of intestinal Niemann-Pick C1-like 1 and scavenger receptor class B type I to cholesterol and tocopherol uptake: in vivo v. in vitro studies. Br J Nutr. 2012;107:1296–304. doi:10.1017/S0007114511004405.

    Article  CAS  PubMed  Google Scholar 

  94. Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res. 2011;50:388–402. doi:10.1016/j.plipres.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  95. Goncalves A, Margier M, Roi S, Collet X, Niot I, Goupy P, et al. Intestinal scavenger receptors are involved in vitamin K1 absorption. J Biol Chem. 2014;289:30743–52. doi:10.1074/jbc.M114.587659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gass J, Vora H, Hofmann AF, Gray GM, Khosla C. Enhancement of dietary protein digestion by conjugated bile acids. Gastroenterology. 2007;133:16–23. doi:10.1053/j.gastro.2007.04.008.

    Article  CAS  PubMed  Google Scholar 

  97. Sanyal AJ, Hirsch JI, Moore EW. Premicellar taurocholate enhances calcium uptake from all regions of rat small intestine. Gastroenterology. 1994;106:866–74.

    Article  CAS  PubMed  Google Scholar 

  98. Sanyal AJ, Hirsch JI, Moore EW. Premicellar taurocholate avidly binds ferrous (Fe++) iron: a potential physiologic role for bile salts in iron absorption. J Lab Clin Med. 1990;116:76–86.

    CAS  PubMed  Google Scholar 

  99. Sanyal AJ, Shiffmann ML, Hirsch JI, Moore EW. Premicellar taurocholate enhances ferrous iron uptake from all regions of rat small intestine. Gastroenterology. 1991;101:382–9.

    Article  CAS  PubMed  Google Scholar 

  100. Sanyal AJ, Hirsch JI, Moore EW. High-affinity binding is essential for enhancement of intestinal Fe2+ and Ca2+ uptake by bile salts. Gastroenterology. 1992;102:1997–2005.

    Article  CAS  PubMed  Google Scholar 

  101. Koop I, Schindler M, Bosshammer A, Scheibner J, Stange E, Koop H. Physiological control of cholecystokinin release and pancreatic enzyme secretion by intraduodenal bile acids. Gut. 1996;39:661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Portincasa P, Peeters TL, van Berge-Henegouwen GP, van Solinge WW, Palasciano G, van Erpecum KJ. Acute intraduodenal bile salt depletion leads to strong gallbladder contraction, altered antroduodenal motility and high plasma motilin levels in humans. Neurogastroenterol Motil. 2000;12:421–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Matsuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Honda, A., Ikegami, T., Matsuzaki, Y. (2017). Intestinal Digestion and Absorption. In: Tazuma, S., Takikawa, H. (eds) Bile Acids in Gastroenterology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56062-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56062-3_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56060-9

  • Online ISBN: 978-4-431-56062-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics