Skip to main content
Log in

Trans-7,cis-9 CLA is synthesized endogenously by Δ9-desaturase in dairy cowsin dairy cows

  • Articles
  • Published:
Lipids

Abstract

Cis-9,trans-11 and trans-7,cis-9 CLA are the most prevalent CLA isomers in milkfat. The majority of cis-9,trans-11 CLA is synthesized endogenously by Δ9-desaturase. We tested the hypothesis that trans-7,cis-9 CLA originates from endogenous synthesis by inhibiting Δ9-desaturase with a source of cyclopropene FA (sterculic oil: SO) or with a trans-10,cis-12 CLA supplement. Experiment 1 (four cows; Latin square) involved four treatments: control, SO, partially hydrogenated vegetable oil (PHVO), and PHVO+SO. Milk, plasma, and rumen fluid were collected. Experiment 2 treatments (four cows) were 0 or 14.0 g/d of 10,12 CLA supplement; milk and plasma were collected. Samples were analyzed by GC and Ag+-HPLC to determine FA. In Experiment 1, SO decreased milkfat content of trans-7,cis-9 CLA by 68 to 71% and cis-9,trans-11 CLA by 61 to 65%. In Experiment 2, the 10,12 CLA supplement decreased milkfat content of trans-7,cis-9 CLA and cis-9,trans-11 by 44 and 25%, respectively. Correcting for the extent of treatment-induced inhibition of Δ9-desaturase based on changes in myristic and myristoleic acids, endogenous synthesis of trans-7,cis-9 CLA represented 85 and 102% in Experiments 1 and 2, respectively. Similar corrected values were 77 and 58% for endogenous synthesis of cis-9,trans-11 CLA. Thus, milkfat cis-9,trans-11 CLA was primarily from endogenous synthesis with a minor portion from rumen escape. In contrast, trans-7,cis-9 CLA was not present in rumen fluid in significant amounts. Results indicate this isomer in milkfat is derived almost exclusively from endogenous synthesis via Δ9-desaturase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PHVO:

partially hydrogenated vegetable oil

SO:

sterculic oil

References

  1. Whigham, L.D., Cook, M.E., and Atkinson, R.L. (2000) Conjugated Linoleic Acid: Implications for Human Health, Pharm. Res. 42, 503–510.

    Article  CAS  Google Scholar 

  2. Sehat, N., Kramer, J.K.G., Mossoba, M.M., Yurawecz, M.P., Roach, J.A.G., Eulitz, K., Morehouse, K.M., and Ku, Y. (1998) Identification of Conjugated Linoleic Acid Isomers in Cheese by Gas Chromatography, Silver Ion High Performance Liquid Chromatography, and Mass Spectral Reconstructed Ion Profiles. Comparison of Chromatographic Elution Sequences, Lipids 33, 963–971.

    Article  PubMed  CAS  Google Scholar 

  3. Fritsche, J., Fritsche, S., Solomon, M.B., Mossoba, M.M., Yurawecz, M.P., Morehouse, K., and Ku, Y. (2000) Quantitative Determination of Conjugated Linoleic Acid Isomers in Beef Fat, Eur. J. Lipid Sci. 102, 667–672.

    Article  CAS  Google Scholar 

  4. Yurawecz, M.P., Roach, J.A.G., Sehat, N., Mossoba, M.M., Kramer, J.K.G., Fritsche, J., Steinhart, H., and Ku, Y. (1998) A New Conjugated Linoleic Acid Isomer, 7trans,9cis-Octadecadienoic Acid, in Cow Milk, Cheese, Beef, and Human Milk and Adipose Tissue, Lipids 33, 803–809.

    Article  PubMed  CAS  Google Scholar 

  5. Parodi, P.W. (1977) Conjugated Octadecadienoic Acids of Milk Fat, J. Dairy Sci. 60, 1550–1553.

    CAS  Google Scholar 

  6. Griinari, J.M., and Bauman, D.E. (1999) Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Meat and Milk in Ruminants, in Advances in Conjugated Linoleic Acid Research (Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., and Nelson, G.J., eds.), Vol. 1, pp. 180–200, AOCS Press, Champaign.

    Google Scholar 

  7. Griinari, J.M., Corl, B.A., Lacy, S.H., Chouinard, P.Y., Nurmela, K.V.V., and Bauman, D.E. (2000) Conjugated Linoleic Acid Is Synthesized Endogenously in Lactating Dairy Cows by Δ9-Desaturase, J. Nutr. 130, 2285–2291.

    PubMed  CAS  Google Scholar 

  8. Corl, B.A., Baumgard, L.H., Dwyer, D.A., Griinari, J.M., Phillips, B.S., and Bauman, D.E. (2001) The Role of Δ9-Desaturase in the Production of cis-9,trans-11 CLA, J. Nutr. Biochem. 12, 622–630.

    Article  PubMed  CAS  Google Scholar 

  9. Katz, I., and Keeney, M. (1966) Characterization of the Octadecenoic Acids in Rumen Digesta and Rumen Bacteria, J. Dairy Sci. 49, 962–966.

    PubMed  CAS  Google Scholar 

  10. Parodi, P.W. (1976) Distribution of Isomeric Octadecenoic Fatty Acids in Milk Fat, J. Dairy Sci. 59, 1870–1873.

    PubMed  CAS  Google Scholar 

  11. Baumgard, L.H., Corl, B.A., Dwyer, D.A., and Bauman, D.E. (2000) Identification of the Conjugated Linoleic Acid Isomer That Inhibits Milk Fat Synthesis, Am. J. Physiol. 278, R179-R184.

    CAS  Google Scholar 

  12. Baumgard, L.H., Matitashvili, E., Corl, B.A., Dwyer, D.A., and Bauman, D.E. (2002) Trans-10,cis-12 CLA Decreases Lipogenic Rates and Expression of Genes Involved in Milk Lipid Synthesis in Dairy Cows, J. Dairy Sci., 85, in press.

  13. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., and Pariza, M.W. (1999) Evidence That the trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Composition Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, K.N., Pariza, M.W., and Ntambi, J.M. (1998) Conjugated Linoleic Acid Decreases Hepatic Stearoyl-CoA Desaturase mRNA Expression, Biochem. Biophys. Res. Comm. 248, 817–821.

    Article  PubMed  CAS  Google Scholar 

  15. Bretillon, L., Chardigny, J.M., Grégoire, S., Berdeaux, O., and Sébédio, J.-L. (1999) Effects of Conjugated Linoleic Acid Isomers on the Hepatic Microsomal Desaturation Activities in vitro, Lipids 34, 965–969.

    Article  PubMed  CAS  Google Scholar 

  16. Park, Y., Storkson, J.M., Ntambi, J.M., Cook, M.E., Sih, C.J., and Pariza, M.W. (2000) Inhibition of Hepatic Stearoyl-CoA Desaturase Activity by trans-10,cis-12 Conjugated Linoleic Acid and Its Derivatives, Biochim. Biophys. Acta 1486, 285–292.

    PubMed  CAS  Google Scholar 

  17. Fox, D.G., Sniffen, C.J., O'Connor, J.D., Russell, J.B., and Van Soest, P.J. (1992) A Net Carbohydrate and Protein System for Evaluating Cattle Diets: III. Cattle Requirements and Diet Adequacy, J. Anim. Sci. 70, 3578–3596.

    PubMed  CAS  Google Scholar 

  18. National Research Council (1989) Nutrient Requirements of Dairy Cattle, 6th rev. edn., National Academy of Sciences, Washington, DC.

    Google Scholar 

  19. Spires, H.R., Clark, J.H., Derrig, R.G., and Davis, C.L. (1975) Milk Production and Nitrogen Utilization in Response to Postruminal Infusion of Sodium Caseinate in Lactating Cows, J. Nutr. 105, 1111–1115.

    PubMed  CAS  Google Scholar 

  20. Harfoot, C.G., Noble, R.C., and Moore, J.H. (1973) Food Particles as a Site for Biohydrogenation of Unsaturated Fatty Acids in the Rumen, Biochem. J. 132, 829–832.

    PubMed  CAS  Google Scholar 

  21. Singh, S., and Hawke, J.C. (1979) The in vitro Lipolysis and Biohydrogenation of Monogalactosyldiglyeride by Whole Rumen Contents and Its Fractions, J. Sci. Food Agr. 30, 603–612.

    Article  CAS  Google Scholar 

  22. Harfoot, C.G., Noble, R.C., and Moore, J.H. (1975) The Role of Plant Particles, Bacteria and Cell-Free Supernatant Fractions of Rumen Contents in the Hydrolysis of Trilinolein and the Subsequent Hydrogenation of Linoleic Acid, Antonie van Leeuwenhoek 41, 533–542.

    PubMed  CAS  Google Scholar 

  23. Harfoot, C.G., and Hazlewood, G.P. (1988) Lipid Metabolism in the Rumen, in The Rumen Microbial Ecosystem (Hobson, P.N., ed.), pp. 285–322, Elsevier Applied Science, London.

    Google Scholar 

  24. Baumgard, L.H., Sangster, J.K., and Bauman, D.E. (2001) Milk Fat Synthesis in Dairy Cows Is Progressively Reduced by Increasing Supplemental Amounts of trans-10,cis-12 Conjugated Linoleic Acid (CLA), J. Nutr. 131, 1764–1769.

    PubMed  CAS  Google Scholar 

  25. Chouinard, P.Y., Corneau, L., Saebo, A., and Bauman, D.E. (1999) Milk Yield and Composition During Abomasal Infusion of Conjugated Linoleic Acid, J. Dairy Sci. 82, 2737–2745.

    PubMed  CAS  Google Scholar 

  26. Christie, W.W. (1989) Gas Chromatography and Lipids: A Practical Guide, p. 68, The Oily Press, Ayr, Scotland.

    Google Scholar 

  27. Hara, A., and Radin, N.S. (1978) Lipid Extraction of Tissues with a Low-Toxicity Solvent, Anal. Biochem. 90, 420–426.

    Article  PubMed  CAS  Google Scholar 

  28. Bateman, H.G., and Jenkins, T.C. (1997) Method for Extraction and Separation by Solid Phase Extraction of Neutral Lipid, Free Fatty Acids, and Polar Lipid from Mixed Microbial Cultures, J. Agric. Food Chem. 45, 132–134.

    Article  CAS  Google Scholar 

  29. Hashimoto, N., Aoyama, T., and Shiori, T. (1981) New Methods and Reagents in Organic Synthesis. 14. A Simple Efficient Preparation of Methyl Esters with Trimethylsilyldiazomethane (TMSCHN2) and Its Application to Gas Chromatographic Analysis of Fatty Acids, Chem. Pharm. Bull. 29, 1475–1478.

    CAS  Google Scholar 

  30. Yurawecz, M.P., Delmonte, P., Kataoka, A., Morehouse, K.M., Corl, B., Baumgard, L., and Bauman, D.E. (2002) Determination of Conjugated Octadecadienoic Fatty Acid Methyl Esters by Silver-Ion HPLC Using Relative Retention Volumes, Abstracts of the 93rd AOCS Annual Meeting, AOCS Press, Champaign (Abstract S6).

    Google Scholar 

  31. Yurawecz, M.P., Delmonte, P., Roach, J.A.G., Morehouse, K.M., Weisz, A., Ito, Y., Nyman, P., and Lehmann, L. (2002) Synthesis and Isolation of trans-7,cis-9 Octadecadienoic Acid and Other CLA Isomers by Base Conjugation of Partially Hydrogenated Octadecatrienoic Fatty Acids, Abstracts of the 93rd AOCS Annual Meeting, AOCS Press, Champaign (Abstract S4).

    Google Scholar 

  32. Fritsche, J., Rickert, R., Steinhart, H., Yurawecz, M.P., Mossoba, M.M., Sehat, N., Roach, J.A.G., Kramer, J.K.G., and Ku, Y. (1999) Conjugated Linoleic Acid (CLA) Isomers: Formation, Analysis, Amounts in Foods, and Dietary Intake Fett/Lipid 101, 272–276.

    Article  CAS  Google Scholar 

  33. SAS Institute, Inc. (1989) SAS/STAT User's Guide, Version 6, 4th edn., SAS Institute, Cary, NC.

    Google Scholar 

  34. Phelps, R.A., Shenstone, F.S., Kemmerer, A.R., and Evans, R.J. (1965) A Review of Cyclopropenoid Compounds: Biological Effects of Some Derivatives, Poult. Sci. 44, 358–394.

    PubMed  CAS  Google Scholar 

  35. Jeffcoat, R., and Pollard, M.R. (1977) Studies on the Inhibition of the Desaturases by Cyclopropenoid Fatty Acids, Lipids 12, 480–485.

    PubMed  CAS  Google Scholar 

  36. Raju, P.K., and Reiser, R. (1967) Inhibition of Fatty Acyl Desaturase by Cyclopropene Fatty Acids, J. Biol. Chem. 242, 379–384.

    PubMed  CAS  Google Scholar 

  37. Cook, L.J., Scott, T.W., Mills, S.C., Fogerty, A.C., and Johnson, A.R. (1976) Effects of Protected Cyclopropene Fatty Acids on the Composition of Ruminant Milk Fat, Lipids 11, 705–711.

    PubMed  CAS  Google Scholar 

  38. Bickerstaffe, R., and Johnson, A.R. (1972) The Effect of Intravenous Infusions of Sterculic Acid on Milk Fat Synthesis, Br. J. Nutr. 27, 561–570.

    Article  PubMed  CAS  Google Scholar 

  39. Peterson, D.G., Baumgard, L.H., and Bauman, D.E. (2002) Milk Fat Response to Low Doses of trans-10,cis-12 Conjugated Linoleic Acid (CLA), J. Dairy Sci 85, 1764–1766.

    Article  PubMed  CAS  Google Scholar 

  40. Bauman, D.E., and Davis, C.L. (1974) Biosynthesis of Milk Fat, in Lactation: A Comprehensive Treatise (Larson, B.L., and Smith V.R., eds.), Vol. 2, pp. 31–75, Academic Press, New York.

    Google Scholar 

  41. Bickerstaffe, R., and Annison, E.F. (1969) Glycerokinase and Desaturase Activity in Pig, Chicken and Sheep Intestinal Epithelium, Comp. Biochem. Physiol. 31, 47–54.

    Article  PubMed  CAS  Google Scholar 

  42. Palmquist, D.L., and Mattos, W. (1978) Turnover of Lipoproteins and Transfer to Milk Fat of Dietary (1-14C)Linoleic Acid in Lactating Cows, J. Dairy Sci. 61, 561–565.

    Article  CAS  Google Scholar 

  43. Bauman, D.E., and Griinari, J.M. (2001) Regulation and Nutritional Manipulation of Milk Fat: Low-Fat Milk Syndrome, Livest. Prod. Sci. 70, 15–29.

    Article  Google Scholar 

  44. Ward, R.J., Travers, M.T., Richards, S.E., Vernon, R.G., Slater, A.M., Buttery, P.J., and Barber, M.C. (1998) Stearoyl-CoA Desaturase mRNA Is Transcribed from a Single Gene in the Ovine Genome, Biochim. Biophys. Acta 1391, 145–156.

    PubMed  CAS  Google Scholar 

  45. St. John, L.C., Lunt, D.K., and Smith, S.B. (1991) Fatty Acid Elongation and Desaturation Enzyme Activities of Bovine Liver and Subcutaneous Adipose Tissue Microsomes, J. Anim. Sci. 69, 1064–1073.

    PubMed  CAS  Google Scholar 

  46. Kinsella, J.E. (1972) Stearyl CoA as a Precursor of Oleic Acid and Glycerolipids in Mammary Microsomes from Lactating Bovine: Possible Regulatory Step in Milk Triglyceride Synthesis, Lipids 7, 349–355.

    PubMed  CAS  Google Scholar 

  47. McDonald, T.M., and Kinsella, J.E. (1973) Stearyl-CoA Desaturase of Bovine Mammary Microsomes, Arch. Biochem. Biophys 156, 223–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Corl, B.A., Baumgard, L.H., Griinari, J.M. et al. Trans-7,cis-9 CLA is synthesized endogenously by Δ9-desaturase in dairy cowsin dairy cows. Lipids 37, 681–688 (2002). https://doi.org/10.1007/s11745-002-0949-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0949-4

Keywords

Navigation