Skip to main content

Conjugated Linoleic Acid: Biosynthesis and Nutritional Significance

  • Chapter
  • First Online:
Advanced Dairy Chemistry, Volume 2

Abstract

The term conjugated linoleic acid (CLA) refers to a mixture of positional and geometric isomers of linoleic acid with a conjugated double-bond system; milk fat can contain over 20 different isomers of CLA, which are produced as transient intermediates in the rumen biohydrogenation of dietary unsaturated fatty acids. cis-9, trans-11 CLA, known as rumenic acid (RA), is the predominant isomer (up to 90% of the total) because it is produced mainly by endogenous synthesis from vaccenic acid (VA). VA is typically the major biohydrogenation intermediate produced in the rumen and it is converted to RA by ∆9-desaturase in the mammary gland and other tissues. Biomedical studies with animal models have shown that RA and VA have anticarcinogenic and antiatherogenic properties. The RA and VA contents in milk fat are directly related and they can be markedly enhanced through the use of diet formulation and nutritional management of dairy cows. CLA isomers in milk fat and how they relate to both animal agriculture and human health are rapidly expanding fields. Milk and dairy products offer exciting opportunities in the area of functional foods, and the functional properties of VA and RA in milk further serve to illustrate the value of dairy products in the human diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • AbuGhazaleh, A. A., Schingoethe, D. J., Hippen, A. R. & Kalscheur, K. F. (2003). Milk conjugated linoleic acid response to fish oil supplementation of diets differing in fatty acid profiles. Journal of Dairy Science, 86, 944–953.

    Google Scholar 

  • AbuGhazaleh, A. A. & Jenkins, T. C. (2004). Docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid. Journal of Dairy Science, 87, 1047–1050.

    Google Scholar 

  • AbuGhazaleh, A. A. & Buckles, W. R. (2007). The effect of solids dilution rate and oil source on trans C18:1 and conjugated linoleic acid production by ruminal microbes in continuous culture. Journal of Dairy Science, 90, 963–969.

    Article  CAS  PubMed  Google Scholar 

  • AbuGhazaleh, A. A., Felton, D. O. & Ibrahim, S. A. (2007). Milk conjugated linoleic acid response to fish oil and sunflower oil supplementation to dairy cows managed under two feeding systems. Journal of Dairy Science, 90, 4763–4769.

    Article  CAS  PubMed  Google Scholar 

  • AbuGhazaleh, A. A., Potu, R. B. & Ibrahim, S. (2009). Short communication: The effect of substituting fish oil in dairy cow diets with docosahexaenoic acid-micro algae on milk composition and fatty acids profile. Journal of Dairy Science, 92, 6156–6159.

    Article  CAS  PubMed  Google Scholar 

  • Adlof, R. O. (2003). Application of silver-ion chromatography to the separation of conjugated linoleic acid isomers. In J. Sebedio, W. W. Christie, & R. Adlof (Eds.), Advances in conjugated linoleic acid research (pp. 43–61). Champaign: AOCS Publishing.

    Google Scholar 

  • Ahnadi, C. E., Beswick, N., Delbecchi, L., Kennelly, J. J. & Lacasse, P. (2002). Addition of fish oil to diets for dairy cows. II. Effects on milk fat and gene expression of mammary lipogenic enzymes. Journal of Dairy Research, 69, 521–531.

    Google Scholar 

  • Alves, S. P., Tyburczy, C., Lawrence, P., Bessa, R. J. & Brenna, J. T. (2011). Acetonitrile covalent adduct chemical ionization tandem mass spectrometry of non-methylene-interrupted pentaene fatty acid methyl esters. Rapid Communications in Mass Spectrometry, 25, 1933–1941.

    Article  CAS  PubMed  Google Scholar 

  • Amores, G. & Virto, M. (2019). Total and free fatty acids analysis in milk and dairy fat. Separations, 6(1), 14.

    Article  CAS  Google Scholar 

  • Apas, A. L., Arena, M. E., Colombo, S. & Gonzalez, S. N. (2015). Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats. Journal of Dairy Science, 98, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Arbonés-Mainar, J. M., Navarro, M. A., Guzmán, M. A., Arnal, C., Surra, J. C., et al. (2006). Selective effect of conjugated linoleic acid isomers on atherosclerotic lesion development in apolipoprotein E knockout mice. Atherosclerosis, 189, 318–327.

    Article  PubMed  CAS  Google Scholar 

  • Aro, A., Männistö, S., Salminen, I., Ovaskainen, M.-L., Kataja, V. & Uusitupa, M. (2000). Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutrition and Cancer, 38, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Auldist, M. J., Kay, J. K., Thomson, N. A., Napper, A. R. & Kolver, E. S. (1999). New Zealand Society of Animal Production, 62: 240–241.

    Google Scholar 

  • Avramis, C. A., Wang, H., McBride, B. W., Wright, T. C. & Hill, A. R. (2003). Physical and processing properties of milk, butter, and Cheddar cheeses from cows fed supplemental fish meal. Journal of Dairy Science, 86, 2568–2576.

    Google Scholar 

  • Baer, R. J., Ryali, J., Schingoethe, D. J., Kasperson, K. M., Donovan, D. C., Hippen, A. R. & Franklin, S. T. (2001). Composition and properties of milk and butter from cows fed fish oil. Journal of Dairy Science, 84, 345–353.

    Google Scholar 

  • Banni, S. (2002). Conjugated linoleic acid metabolism. Current Opinion in Lipidology, 13, 261–266.

    Article  CAS  PubMed  Google Scholar 

  • Banni, S. (2003). Conjugated linoleic acids as anticancer nutrients: Studies in vivo and cellular mechanisms. Sebedio, J. Christie, W. W. Adolf, R. (Eds.). Advances in conjugated linoleic acid research, 2, 267–282.

    Google Scholar 

  • Banni, S., Carta, G., Contini, M. S., Angioni, E., Deiana, M., et al. (1996). Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues. Journal of Nutritional Biochemistry, 7, 150–155.

    Article  CAS  Google Scholar 

  • Banni, S., Angioni, E., Murru, E., Carta, G., Paola, M. M., et al. (2001). Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland. Nutrition and Cancer, 41, 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Barber, M., Ward, R., Richards, S., Salter, A., Buttery, P., et al. (2000). Ovine adipose tissue monounsaturated fat content is correlated to depot-specific expression of the stearoyl-CoA desaturase gene. Journal of Animal Science, 78, 62–68.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, E., Ross, R. P., Fitzgerald, G. F. & Stanton, C. (2007). Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Applied and Environmental Microbiology, 73, 2333–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauman, D. E. & Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science, 63, 1514–1529.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D. & Griinari, J. (2001). Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livestock Production Science, 70, 15–29.

    Article  Google Scholar 

  • Bauman, D. E. & Griinari, J. M. (2003). Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 23, 203–227.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D., Barbano, D., Dwyer, D. & Griinari, J. (2000). Production of butter with enhanced conjugated linoleic acid for use in biomedical studies with animal models. Journal of Dairy Science, 83, 2422–2425.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D. E., Corl, B. A. & Peterson, D. G. (2003). The biology of conjugated linoleic acids in ruminants. In Sebedio, J. Christie, W. W. Adolf, R. (Eds.), Advances in conjugated linoleic acid research (pp. 152–179). Champaign: AOCS Publishing.

    Google Scholar 

  • Bauman, D., Lock, A., Corl, B., Ip, C., Salter, A. & Parodi, P. (2006). Milk fatty acids and human health: Potential role of conjugated linoleic acid and trans fatty acids. In K. Sejrsen, T. Hvelplund & M. O. Nielsen (Eds.), Ruminant physiology: Digestion, metabolism and impact of nutrition on gene expression, immunology and stress (pp. 523–555). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Bauman, D. E., Harvatine, K. J. & Lock, A. L. (2011). Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annual Review of Nutrition, 31, 299–319.

    Article  CAS  PubMed  Google Scholar 

  • Baumgard, L. H., Corl, B. A., Dwyer, D. A., Sæbø, A. & Bauman, D. E. (2000). Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 278, R179–RR84.

    Article  CAS  PubMed  Google Scholar 

  • Baumgard, L. H., Sangster, J. K. & Bauman, D. E. (2001). Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). Journal of Nutrition, 131, 1764–1769.

    Google Scholar 

  • Baumgard, L., Matitashvili, E., Corl, B., Dwyer, D. & Bauman, D. (2002). Trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. Journal of Dairy Science, 85, 2155–2163.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu, A. D. & Palmquist, D. L. (1995). Differential-effects of high-fat diets on fatty-acid composition in milk of Jersey and Holstein cows. Journal of Dairy Science, 78, 1336–1344. 

    Google Scholar 

  • Belury, M. A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22, 505–531.

    Article  CAS  PubMed  Google Scholar 

  • Bernal-Santos, G., Perfield, J., II, Barbano, D., Bauman, D. & Overton, T. (2003). Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. Journal of Dairy Science, 86, 3218–3228.

    Article  CAS  PubMed  Google Scholar 

  • Bernuy, B., Meurens, M., Mignolet, E. & Larondelle, Y. (2008). Performance comparison of UV and FT-Raman spectroscopy in the determination of conjugated linoleic acids in cow milk fat. Journal of Agricultural and Food Chemistry, 56, 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  • Bichi, E., Frutos, P., Hervás, G., Keisler, D., Loor, J. J. & Toral, P. G. (2013). Dietary marine algae and its influence on tissue gene network expression during milk fat depression in dairy ewes. Animal Feed Science and Technology, 186, 36–44.

    Article  CAS  Google Scholar 

  • Bickerstaffe, R. & Annison, E. (1969). Glycerokinase and desaturase activity in pig, chicken and sheep intestinal epithelium. Comparative Biochemistry and Physiology, 31, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Bickerstaffe, R. & Annison, E. (1970). The desaturase activity of goat and sow mammary tissue. Comparative Biochemistry and Physiology, 35, 653–665.

    Article  CAS  Google Scholar 

  • Bickerstaffe, R. & Johnson, A. (1972). The effect of intravenous infusions of sterculic acid on milk fat synthesis. British Journal of Nutrition, 27, 561–570.

    Google Scholar 

  • Boeckaert, C., Vlaeminck, B., Fievez, V., Maignien, L., Dijkstra, J. & Boon, N. (2008). Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Applied and Environmental Microbiology, 74, 6923–6930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth, R. G., Dann, W. J., Kon, S. K. & Moore, T. (1933). A new variable factor in butter fat. Chemistry & Industry, 52, 270.

    Google Scholar 

  • Bretillon, L., Chardigny, J., Gregoire, S., Berdeaux, O. & Sebedio, J. (1999). Effects of conjugated linoleic acid isomers on the hepatic microsomal desaturation activities in vitro. Lipids, 34, 965–969.

    Article  CAS  PubMed  Google Scholar 

  • Burdge, G. C., Lupoli, B., Russell, J. J., Tricon, S., Kew, S., et al. (2004). Incorporation of cis-9, trans-11 or trans-10, cis-12 conjugated linoleic acid into plasma and cellular lipids in healthy men. Journal of Lipid Research, 45, 736–741.

    Article  CAS  PubMed  Google Scholar 

  • Bu, D. P., Wang, J. Q., Dhiman, T. R. & Liu, S. J. (2007). Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. Journal of Dairy Science, 90, 998–1007.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, P., Rogers, M., Oman, J., May, S., Lunt, D. & Smith, S. (1994). Stearoyl coenzyme A desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose tissue from Angus and American Wagyu steers. Journal of Animal Science, 72, 2624–2628.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, E. M., Gallagher, D. S., Davis, S. K., Taylor, J. F. & Smith, S. B. (2001). Rapid communication: mapping of the bovine stearoyl-coenzyme A desaturase (SCD) gene to BTA261. Journal of Animal Science, 79, 1954–1955.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, W., Drake, M. A. & Larick, D. K. (2003). The impact of fortification with conjugated linoleic acid (CLA) on the quality of fluid milk. Journal of Dairy Science, 86, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Carreño, D., Hervás, G., Toral, P. G., Castro-Carrera, T. & Frutos, P. (2016). Fish oil-induced milk fat depression and associated downregulation of mammary lipogenic genes in dairy ewes. Journal of Dairy Science, 99, 7971–7981.

    Article  PubMed  CAS  Google Scholar 

  • Cesano, A., Visonneau, S., Scimeca, J., Kritchevsky, D. & Santoli, D. (1998). Opposite effects of linoleic acid and conjugated linoleic acid on human prostatic cancer in SCID mice. Anticancer Research, 18, 1429–1434.

    CAS  PubMed  Google Scholar 

  • Chajès, V., Lavillonnière, F., Maillard, V., Giraudeau, B., Jourdan, M.-L., et al. (2003). Conjugated linoleic acid content in breast adipose tissue of breast cancer patients and the risk of metastasis. Nutrition and Cancer, 45, 17–23.

    Article  PubMed  Google Scholar 

  • Chang, J. H., Lunt, D. K. & Smith, S. B. (1992). Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. Journal of Nutrition, 122, 2074–2080.

    Google Scholar 

  • Chilliard, Y., Ferlay, A., Mansbridge, R. M. & Doreau, M. (2000). Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Annales De Zootechnie, 49, 181–205.

    Google Scholar 

  • Chilliard, Y., Ferlay, A. & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Production Science, 70, 31–48.

    Article  Google Scholar 

  • Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. & Doreau, M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. European Journal of Lipid Science and Technology, 109, 828–855.

    Article  CAS  Google Scholar 

  • Choi, Y., Kim, Y.-C., Han, Y.-B., Park, Y., Pariza, M. W. & Ntambi, J. M. (2000). The trans-10, cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. Journal of Nutrition, 130, 1920–1924.

    Google Scholar 

  • Chouinard, P. Y., Corneau, L., Barbano, D. M., Metzger, L. E. & Bauman, D. E. (1999a). Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. Journal of Nutrition, 129, 1579–1584.

    Google Scholar 

  • Chouinard, P., Corneau, L., Sæbø, A. & Bauman, D. (1999b). Milk yield and composition during abomasal infusion of conjugated linoleic acids in dairy cows. Journal of Dairy Science, 82, 2737–2745.

    Article  CAS  PubMed  Google Scholar 

  • Chouinard, P. Y., Corneau, L., Butler, W. R., Bauman, D. E., Chilliard, Y. & Drackley, J. K. (2001). Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. Journal of Dairy Science, 84, 680–690.

    Article  CAS  PubMed  Google Scholar 

  • Christie, W. W. (1982). A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. Journal of Lipid Research, 23, 1072–1075.

    CAS  PubMed  Google Scholar 

  • Christie, W. W., Dobson, G. & Adlof, R. O. (2007). A practical guide to the isolation, analysis and identification of conjugated linoleic acid. Lipids, 42, 1073–1084.

    Article  CAS  PubMed  Google Scholar 

  • Chung, M., Ha, S., Jeong, S., BOK, J., CHO, K., et al. (2000). Cloning and characterization of bovine stearoyl CoA desaturase1 cDNA from adipose tissues. Bioscience, Biotechnology, and Biochemistry, 64, 1526–1530.

    Article  CAS  PubMed  Google Scholar 

  • Cooney, A. & Headon, D. (1989). Molecular cloning of the bovine gene encoding the stearyl coenzyme A desaturase. London: Portland Press Limited.

    Book  Google Scholar 

  • Cooper, M. H., Miller, J. R., Mitchell, P. L., Currie, D. L. & McLeod, R. S. (2008). Conjugated linoleic acid isomers have no effect on atherosclerosis and adverse effects on lipoprotein and liver lipid metabolism in apoE−/− mice fed a high-cholesterol diet. Atherosclerosis, 200, 294–302.

    Article  CAS  PubMed  Google Scholar 

  • Coppa, M., Ferlay, A., Leroux, C., Jestin, M., Chilliard, Y., et al. (2010). Prediction of milk fatty acid composition by near infrared reflectance spectroscopy. International Dairy Journal, 20, 182–189.

    Article  CAS  Google Scholar 

  • Corl, B. A., Baumgard, L. H., Dwyer, D. A., Griinari, J. M., Phillips, B. S. & Bauman, D. E. (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. Journal of Nutritional Biochemistry, 12, 622–630.

    Google Scholar 

  • Corl, B. A., Barbano, D. M., Bauman, D. E. & Ip, C. (2003). cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. Journal of Nutrition, 133, 2893–2900.

    Google Scholar 

  • Corl, B. A., Baumgard, L. H., Griinari, J. M., Delmonte, P., Morehouse, K. M., et al. (2002). Trans-7, cis-9 CLA is synthesized endogenously by Δ9-desaturase in dairy cowsin dairy cows. Lipids, 37, 681–688.

    Google Scholar 

  • Cruz-Hernandez, C., Deng, Z., Zhou, J., Hill, A. R., Yurawecz, M. P., et al. (2004). Methods for analysis of conjugated linoleic acids and trans-18: 1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. Journal of AOAC International, 87, 545–562.

    Article  CAS  PubMed  Google Scholar 

  • Czauderna, M., Kowalczyk, J., Marounek, M., Mlchalski, J. P., Rozbicka-Wieczorek, A. J. & Krajewska, K. A. (2011). A new internal standard for HPLC assay of conjugated linoleic acid in animal tissues and milk. Czech Journal of Animal Science, 56(1), 23–29.

    Article  CAS  Google Scholar 

  • de Veth, M. J., Griinari, J. M., Pfeiffer, A.-M. & Bauman, D. E. (2004). Effect of CLA on milk fat synthesis in dairy cows: Comparison of inhibition by methyl esters and free fatty acids, and relationships among studies. Lipids, 39, 365–372.

    Article  PubMed  Google Scholar 

  • den Hartigh, L. J. (2019). Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients, 11, 370.

    Article  CAS  Google Scholar 

  • Davis, C. & Brown, R. (1970). Low-fat milk syndrome. In A. T. Phillipson (Ed.), Physiology of Digestion and Metabolism in the Ruminant (pp. 545–565). Newcastle upon Tyne, UK: Oriel Press Limited.

    Google Scholar 

  • Davis, A. L., Mc Neill, G. P. & Caswell, D. C. (1999). Analysis of conjugated linoleic acid isomers by 13C NMR spectroscopy. Chemistry and Physics of Lipids, 97, 155–165.

    Article  CAS  Google Scholar 

  • Dawson, R. & Kemp, P. (1970). Biohydrogenation of dietary fats in ruminants. Physiology of Digestion and Metabolism in the Ruminant, 504–518.

    Google Scholar 

  • de Veth, M., McFadden, J., Griinari, J., Gulati, S., Luchini, N. & Bauman, D. (2003). Comparison of the effect of different rumen protected forms of CLA on milk fat synthesis. Journal of Dairy Science, 86, 146–147.

    Google Scholar 

  • DePeters, E. J., Medrano, J. F. & Reed, B. A. (1995). Fatty acid composition of milk fat from three breeds of dairy cattle. Canadian Journal of Animal Science, 75, 267–269.

    Article  CAS  Google Scholar 

  • Derakhshande-Rishehri, S. M., Mansourian, M., Kelishadi, R. & Heidari-Beni, M. (2015). Association of foods enriched in conjugated linoleic acid (CLA) and CLA supplements with lipid profile in human studies: A systematic review and meta-analysis. Public Health Nutrition, 18, 2041–2054.

    Article  PubMed  Google Scholar 

  • Dhiman, T., Satter, L., Pariza, M., Galli, M., Albright, K. & Tolosa, M. (2000). Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. Journal of Dairy Science, 83, 1016–1027.

    Article  CAS  PubMed  Google Scholar 

  • Dhiman, T. R., Nam, S. H. & Ure, A. L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical Reviews in Food Science and Nutrition, 45, 463–482.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, G. (2003). Gas chromatography-mass spectrometry of conjugated linoleic acids and metabolites. In Sebedio, J. Christie, W. W. Adlof, R. (Eds.). Advances in conjugated linoleic acid research (pp. 19–42). Champaign: AOCS Publishing.

    Google Scholar 

  • Donnelly, C., Olsen, A. M., Lewis, L. D., Eisenberg, B. L., Eastman, A. & Kinlaw, W. B. (2008). Conjugated linoleic acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells. Nutrition and Cancer, 61, 114–122.

    Article  CAS  Google Scholar 

  • Doreau, M. & Ferlay, A. (1994). Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology, 45, 379–396.

    Article  CAS  Google Scholar 

  • Doreau, M., Demeyer, D. & Van Nevel, C. (1997). Transformation and effects of unsaturated fatty acids in the rumen. Consequences on milk fat secretion. In R. A. S. Welch (Ed.), Milk composition, production and biotechnology (pp. 73–92). Wallingford: CAB International.

    Google Scholar 

  • Doreau, M., Chilliard, Y., Rulquin, H. & Demeyer, D. (1999). Manipulation of milk fat in dairy cows. Recent Advances in Animal Nutrition, 81–110.

    Google Scholar 

  • Duckett, S. K., Andrae, J. G. & Owens, F. N. (2002). Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. Journal of Animal Science, 80, 3353–3360.

    Article  CAS  PubMed  Google Scholar 

  • Dugan, M. E., Kramer, J. K., Robertson, W. M., Meadus, W. J., Aldai, N. & Rolland, D. C. (2007). Comparing subcutaneous adipose tissue in beef and muskox with emphasis on trans 18:1 and conjugated linoleic acids. Lipids, 42, 509–518.

    Google Scholar 

  • Dus-Zuchowska, M., Madry, E., Krzyzanowska, P., Bogdanski, P. & Walkowiak, J. (2016). Twelve-week-conjugated linoleic acid supplementation has no effects on the selected markers of atherosclerosis in obese and overweight women. Food and Nutrition Research, 60, 32776.

    Article  PubMed  CAS  Google Scholar 

  • Eftekhari, M. H., Aliasghari, F., Babaei-Beigi, M. A. & Hasanzadeh, J. (2013). Effect of conjugated linoleic acid and omega-3 fatty acid supplementation on inflammatory and oxidative stress markers in atherosclerotic patients. ARYA Atherosclerosis, 9, 311–318.

    Google Scholar 

  • Eftekhari, M. H., Aliasghari, F., Beigi, M. A. B. & Hasanzadeh, J. (2014). The effect of conjugated linoleic acids and omega-3 fatty acids supplementation on lipid profile in atherosclerosis. Advanced Biomedical Research, 3, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faulconnier, Y., Bernard, L., Boby, C., Domagalski, J., Chilliard, Y. & Leroux, C. (2018). Extruded linseed alone or in combination with fish oil modifies mammary gene expression profiles in lactating goats. Animal, 12, 1564–1575.

    Article  CAS  PubMed  Google Scholar 

  • Faulkner, H., O’Callaghan, T. F., McAuliffe, S., Hennessy, D., Stanton, C., et al. (2018). Effect of different forage types on the volatile and sensory properties of bovine milk. Journal of Dairy Science, 101, 1034–1047.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, M., Schroeder, J. A., Borowsky, A. D., Besselsen, D. G., Thomson, C. A., et al. (2010). Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice. Carcinogenesis, 31, 1642–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franczyk-Żarów, M., Kostogrys, R. B., Szymczyk, B., Jawień, J., Gajda, M., et al. (2008). Functional effects of eggs, naturally enriched with conjugated linoleic acid, on the blood lipid profile, development of atherosclerosis and composition of atherosclerotic plaque in apolipoprotein E and low-density lipoprotein receptor double-knockout mice (apoE/LDLR−/−). British Journal of Nutrition, 99, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, S. T., Martin, K. R., Baer, R. J., Schingoethe, D. J. & Hippen, A. R. (1999). Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and trans vaccenic acids in milk of dairy cows. Journal of Nutrition, 129, 2048–2054.

    Google Scholar 

  • Fretin, M., Martin, B., Buchin, S., Desserre, B., Lavigne, R., et al. (2019). Milk fat composition modifies the texture and appearance of Cantal-type cheeses but not their flavor. Journal of Dairy Science, 102, 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  • Frutos, P., Toral, P. G. & Hervás, G. (2017). Individual variation of the extent of milk fat depression in dairy ewes fed fish oil: Milk fatty acid profile and mRNA abundance of candidate genes involved in mammary lipogenesis. Journal of Dairy Science, 100, 9611–9622.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, C., Duby, C., Catheline, D., Toral, P. G., Bernard, L., et al. (2017). Synthesis of the suspected trans-11, cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid. Journal of Dairy Science, 100, 783–796.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, C., Guillocheau, E., Richard, L., Drouin, G., Catheline, D., et al. (2018). Conversion of dietary trans-vaccenic acid to trans11, cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end Δ13-desaturation. Biochemical and Biophysical Research Communications, 505, 385–391.

    Google Scholar 

  • Garnsworthy, P. C., Feng, S., Lock, A. L. & Royal, M. D. (2010). Heritability of milk fatty acid composition and stearoyl-CoA desaturase indices in dairy cows. Journal of Dairy Science, 93, 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  • Gervais, R., McFadden, J., Lengi, A., Corl, B. & Chouinard, P. (2009). Effects of intravenous infusion of trans-10, cis-12 18: 2 on mammary lipid metabolism in lactating dairy cows. Journal of Dairy Science, 92, 5167–5177.

    Article  CAS  PubMed  Google Scholar 

  • Giesy, J., McGuire, M., Shafii, B. & Hanson, T. (2002). Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in midlactation Holstein cows. Journal of Dairy Science, 85, 2023–2029.

    Article  CAS  PubMed  Google Scholar 

  • Gnädig, S., Chamba, J.-F., Perreard, E., Chappaz, S., Chardigny, J.-M., et al. (2004). Influence of manufacturing conditions on the conjugated linoleic acid content and the isomer composition in ripened French Emmental cheese. Journal of Dairy Research, 71, 367–371.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, F. E., Bauman, D. E., Ntambi, J. M. & Fox, B. G. (2003). Effects of sterculic acid on stearoyl-CoA desaturase in differentiating 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 300, 316–326.

    Article  PubMed  Google Scholar 

  • Gonzalez, S., Duncan, S. E., O’Keefe, S. F., Sumner, S. S. & Herbein, J. H. (2003). Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles. Journal of Dairy Science, 86, 70–77.

    Google Scholar 

  • Griinari, J. & Bauman, D. (1999). Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. Advances in Conjugated Linoleic Acid Research, 1, 180–200.

    CAS  Google Scholar 

  • Griinari, J. & Bauman, D. (2003). Update on theories of diet-induced milk fat depression and potential applications. Recent Advances in Animal Nutrition, 115–156.

    Google Scholar 

  • Griinari, J. & Bauman, D. (2006). Milk fat depression: Concepts, mechanisms and management applications. Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress, 389–417.

    Google Scholar 

  • Griinari, J., Bauman, D., Chilliard, Y., Perajoki, P. & Nurmela, K. (2000). Dietary influences on conjugated linoleic acids (CLA) in bovine milk fat. 3rd Meeting of the European Section of AOCS. Oils and Fats, from Basic Research to Industrial Applications. June 18-21, 2000. Helsinki, Finland. (Abs).

    Google Scholar 

  • Griinari, J., Dwyer, D., McGuire, M., Bauman, D., Palmquist, D. & Nurmela, K. (1998). Trans-octadecenoic acids and milk fat depression in lactating dairy cows. Journal of Dairy Science, 81, 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  • Griinari, J., Corl, B., Lacy, S., Chouinard, P., Nurmela, K. & Bauman, D. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. Journal of Nutrition, 130, 2285–2291.

    Google Scholar 

  • Gu, M., Cosenza, G., Iannaccone, M., Macciotta, N. P. P., Guo, Y., et al. (2019). The single nucleotide polymorphism g. 133A> C in the stearoyl CoA desaturase gene (SCD) promoter affects gene expression and quali-quantitative properties of river buffalo milk. Journal of Dairy Science, 102, 442–451.

    Article  CAS  PubMed  Google Scholar 

  • Gulati, A., Galvin, N., Lewis, E., Hennessy, D., O'Donovan, M., et al. (2018). Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. Journal of Dairy Science, 101, 2710–2723.

    Article  CAS  PubMed  Google Scholar 

  • Ha, Y., Grimm, N. & Pariza, M. (1987). Anticarcinogens from fried ground beef: Heat-altered derivatives of linoleic acid. Carcinogenesis, 8, 1881–1887.

    Article  CAS  PubMed  Google Scholar 

  • Ha, Y. L., Storkson, J. & Pariza, M. W. (1990). Inhibition of benzo (a) pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Research, 50, 1097–1101.

    CAS  PubMed  Google Scholar 

  • Haghighatdoost, F. & Hariri, M. (2018). Effect of conjugated linoleic acid supplementation on serum leptin concentration: A systematic review and meta-analysis. Endocrine, Metabolic & Immune Disorders Drug Targets, 18, 185–193.

    Article  CAS  Google Scholar 

  • Hanuš, O., Křížová, L., Samková, E., Špička, J., Kučera, J., et al. (2016). The effect of cattle breed, season and type of diet on the fatty acid profile of raw milk. Archives Animal Breeding, 59, 373–380.

    Article  Google Scholar 

  • Harfoot, C. (1981). Lipid metabolism in the rumen. In Lipid metabolism in ruminant animals (pp. 21–55). New York: Elsevier.

    Chapter  Google Scholar 

  • Harfoot, C. & Hazlewood, G. (1997). Lipid metabolism in the rumen. In P. N. Hobson (Ed.), The rumen microbial ecosystem (pp. 382–426). Elsevier: London.

    Chapter  Google Scholar 

  • Harvatine, K. J. & Bauman, D. E. (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. Journal of Nutrition, 136, 2468–2474.

    Google Scholar 

  • Horton, J. D., Goldstein, J. L. & Brown, M. S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 109, 1125–1131.

    Google Scholar 

  • Ip, C., Chin, S. F., Scimeca, J. A. & Pariza, M. W. (1991). Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Research, 51, 6118–6124.

    CAS  PubMed  Google Scholar 

  • Ip, C., Singh, M., Thompson, H. J. & Scimeca, J. A. (1994). Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Research, 54, 1212–1215.

    CAS  PubMed  Google Scholar 

  • Ip, C., Scimeca, J. A. & Thompson, H. (1995). Effect of timing and duration of dietary conjugated linoleic acid on mammary cancer prevention. Nutrition and Cancer, 24(3), 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Ip, C., Banni, S., Angioni, E., Carta, G., McGinley, J., et al. (1999). Conjugated linoleic acid–enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. Journal of Nutrition, 129, 2135–2142.

    Google Scholar 

  • Ip, M. M., Masso-Welch, P. A. & Ip, C. (2003). Prevention of mammary cancer with conjugated linoleic acid: Role of the stroma and the epithelium. Journal of Mammary Gland Biology and Neoplasia, 8, 103–118.

    Article  PubMed  Google Scholar 

  • Jacobs, A. A. A., Van Baal, J., Smits, M. A., Taweel, H. Z. H., Hendriks, W. H., Van Vuuren, A. M. & Dijkstra, J., (2011). Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows. Journal of Dairy Science, 94, 874-887.

    Google Scholar 

  • Jahreis, G., Fritsche, J. & Steinhart, H. (1997). Conjugated linoleic acid in milk fat: High variation depending on production system. Nutrition Research, 17, 1479–1484.

    Article  CAS  Google Scholar 

  • Jarvis, G. & Moore, E. (2010). Lipid metabolism and the rumen microbial ecosystem. Handbook of Hydrocarbon and Lipid Microbiology, 2245–2257.

    Google Scholar 

  • Jeffcoat, R. & Pollard, M. (1977). Studies on the inhibition of the desaturases by cyclopropenoid fatty acids. Lipids, 12, 480–485.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science, 76, 3851–3863.

    Google Scholar 

  • Jenkins, T. C. & Harvatine, K. J. (2014). Lipid feeding and milk fat depression. Veterinary Clinics: Food Animal Practice, 30, 623–642.

    Google Scholar 

  • Jenkins, T., Wallace, R., Moate, P. & Mosley, E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86, 397–412.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Bjoerck, L., Fondén, R. & Emanuelson, M. (1996). Occurrence of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk: Effects of feed and dietary regimen. Journal of Dairy Science, 79, 438–445.

    Article  CAS  PubMed  Google Scholar 

  • Kadegowda, A., Piperova, L. & Erdman, R. (2008). Principal component and multivariate analysis of milk long-chain fatty acid composition during diet-induced milk fat depression. Journal of Dairy Science, 91, 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Kanter, J., Goodspeed, L., Wang, S., Kramer, F., Wietecha, T., et al. (2018). 10, 12 conjugated linoleic acid-driven weight loss is protective against atherosclerosis in mice and is associated with alternative macrophage enrichment in perivascular adipose tissue. Nutrients, 10, 1416.

    Article  CAS  PubMed Central  Google Scholar 

  • Kay, J., Mackle, T., Auldist, M., Thomson, N. & Bauman, D. (2004). Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. Journal of Dairy Science, 87, 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Keeney, M. (1970). Lipid metabolism in the rumen. In A. T. Phillipson (Ed.), Physiology of digestion and metabolism in the ruminant. Newcastle-upon-Tyne: Oriel Press.

    Google Scholar 

  • Kelly, M. L. & Bauman, D. E. (1996). Conjugated linoleic acid: A potent anticarcinogen found inmilk fat. Proceedings of Cornell Nutrition Conference for Feed Manufacturers, Cornell University, Ithaca, NY, 68–74.

    Google Scholar 

  • Kelly, M. L., Berry, J. R., Dwyer, D. A., Griinari, J., Chouinard, P. Y., et al. (1998). Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. Journal of Nutrition, 128, 881–885.

    Google Scholar 

  • Kelsey, J. A., Corl, B. A., Collier, R. J. & Bauman, D. E. (2003). The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. Journal of Dairy Science, 86, 2588–2597.

    Article  CAS  PubMed  Google Scholar 

  • Kemp P. & Lander, D. J. (1984). Hydrogenation in vitro of α-linolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. Microbiology, 130, 527–533.

    Article  CAS  Google Scholar 

  • Kepler, C. R. & Tove, S. (1967). Biohydrogenation of unsaturated fatty acids III. Purification and properties of a linoleate Δ12-cis, Δ11-trans-isomerase from Butryrivibrio fibrisolvens. Journal of Biological Chemistry, 242, 5686–5692.

    Google Scholar 

  • Kepler, C. R., Tucker, W. & Tove, S. (1970). Biohydrogenation of unsaturated fatty acids IV. Substrate specificity and inhibition of linoleate Δ12-CIS, Δ11-trans-isomerase from butyrivibrio fibrisolvens. Journal of Biological Chemistry, 245, 3612–3620.

    Google Scholar 

  • Khanal, R. C., Dhiman, T. R., Ure, A. L., Brennand, C. P., Boman, R. L. & McMahon, D. J. (2005). Consumer acceptability of conjugated linoleic acid-enriched milk and cheddar cheese from cows grazing on pasture. Journal of Dairy Science, 88, 1837–1847.

    Article  CAS  PubMed  Google Scholar 

  • Kilcawley, K. N., Faulkner, H., Clarke, H. J., O’Sullivan, M. G. & Kerry, J. P. (2018). Factors influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods, 7, 37.

    Google Scholar 

  • Kim, Y., Liu, R., Rychlik, J. & Russell, J. (2002). The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. Journal of Applied Microbiology, 92, 976–982.

    Google Scholar 

  • Kinsella, J. (1972). Stearyl CoA as a precursor of oleic acid and glycerolipids in mammary microsomes from lactating bovine: Possible regulatory step in milk triglyceride synthesis. Lipids, 7, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Kliem, K. E. & Shingfield, K. J. (2016). Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. European Journal of Lipid Science and Technology, 118, 1661–1683.

    Article  CAS  Google Scholar 

  • Kohno, H., Suzuki, R., Yasui, Y., Hosokawa, M., Miyashita, K. & Tanaka, T. (2004a). Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Science, 95, 481–486.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, H., Yasui, Y., Suzuki, R., Hosokawa, M., Miyashita, K. & Tanaka, T. (2004b). Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARγ expression and alteration of lipid composition. International Journal of Cancer, 110, 896–901.

    Article  CAS  PubMed  Google Scholar 

  • Koronowicz, A. A. & Banks, P. (2018). Antitumor properties of CLA-enriched food products. Nutrition and Cancer, 70, 529–545.

    Article  CAS  PubMed  Google Scholar 

  • Koronowicz, A. A., Banks, P., Domagała, D., Master, A., Leszczyńska, T., et al. (2016). Fatty acid extract from CLA-enriched egg yolks can mediate transcriptome reprogramming of MCF-7 cancer cells to prevent their growth and proliferation. Genes and Nutrition, 11, 22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koronowicz, A. A., Banks, P., Master, A., Domagała, D., Piasna-Słupecka, E., et al. (2017). Fatty acids of CLA-enriched egg yolks can induce transcriptional activation of peroxisome proliferator-activated receptors in MCF-7 breast cancer cells. PPAR Research, 2017.

    Google Scholar 

  • Kostogrys, R. B., Franczyk-Żarów, M., Maslak, E., Gajda, M. & Chłopicki, S. (2012). Effects of margarine supplemented with t10c12 and C9T11 CLA on atherosclerosis and steatosis in apoE/LDLR-/-mice. Journal of Nutrition, Health and Aging, 16, 482–490.

    Google Scholar 

  • Kraft, J., Collomb, M., Möckel, P., Sieber, R. & Jahreis, G. (2003). Differences in CLA isomer distribution of cow’s milk lipids. Lipids, 38, 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Krag, K., Poulsen, N. A., Larsen, M. K., Larsen, L. B., Janss, L. L. & Buitenhuis, B. (2013). Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach. BMC Genetics, 14, 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer, J. K. G., Fellner, V., Dugan, M. E. R., Sauer, F. D., Mossoba, M. M. & Yurawecz, M. P. (1997). Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids, 32, 1219–1228.

    Google Scholar 

  • Kramer, J. K., Parodi, P. W., Jensen, R. G., Mossoba, M. M., Yurawecz, M. P. & Adlof, R. O. (1998). Rumenic acid: A proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids, 33, 835.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, J. K., Cruz-Hernandez, C., Deng, Z., Zhou, J., Jahreis, G. & Dugan, M. E. (2004). Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. American Journal of Clinical Nutrition, 79, 1137S–1145S.

    Google Scholar 

  • Kritchevsky, D., Tepper, S. A., Wright, S., Tso, P. & Czarnecki, S. K. (2000). Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. Journal of the American College of Nutrition, 19, 472S–477S.

    Article  CAS  PubMed  Google Scholar 

  • Kritchevsky, D., Tepper, S. A., Wright, S. & Czarnecki, S. K. (2002). Influence of graded levels of conjugated linoleic acid (CLA) on experimental atherosclerosis in rabbits. Nutrition Research, 22, 1275–1279.

    Article  CAS  Google Scholar 

  • Kritchevsky, D., Tepper, S. A., Wright, S., Czarnecki, S. K., Wilson, T. A. & Nicolosi, R. J. (2004). Conjugated linoleic acid isomer effects in atherosclerosis: Growth and regression of lesions. Lipids, 39, 611–616.

    Google Scholar 

  • Lacasse, P., Kennelly, J. J., Delbecchi, L. & Ahnadi, C. E. (2002). Addition of protected and unprotected fish oil to diets for dairy cows. I. Effects on the yield, composition and taste of milk. Journal of Dairy Research, 69, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, S. C., Bergkvist, L. & Wolk, A. (2005). High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. American Journal of Clinical Nutrition, 82, 894–900.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, S. C., Bergkvist, L. & Wolk, A. (2009). Conjugated linoleic acid intake and breast cancer risk in a prospective cohort of Swedish women. American Journal of Clinical Nutrition, 90, 556–560.

    Article  CAS  PubMed  Google Scholar 

  • Lawless, F., Murphy, J., Harrington, D., Devery, R. & Stanton, C. (1998). Elevation of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk because of dietary supplementation. Journal of Dairy Science, 81, 3259–3267.

    Article  CAS  PubMed  Google Scholar 

  • Lawless, F., Stanton, C., L’escop, P., Devery, R., Dillon, P. & Murphy, J. J. (1999). Influence of breed on bovine milk cis-9, trans-11-conjugated linoleic acid content. Livestock Production Science, 62, 43–49.

    Article  Google Scholar 

  • Lee, K. N., Kritchevsky, D. & Parizaa, M. W. (1994). Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis, 108, 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. N., Pariza, M. W. & Ntambi, J. M. (1998). Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase mRNA expression. Biochemical and Biophysical Research Communications, 248, 817–821.

    Article  CAS  PubMed  Google Scholar 

  • Lengi, A. & Corl, B. (2007). Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5. Lipids, 42, 499–508.

    Article  CAS  PubMed  Google Scholar 

  • Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.

    Article  CAS  PubMed  Google Scholar 

  • Liew, C., Schut, H., Chin, S., Pariza, M. & Dashwood, R. (1995). Protection of conjugated linoleic acids against 2-amino-3-methylimidazo [4, 5-f] quinoline-induced colon carcinogenesis in the F344 rat: A study of inhibitory mechanisms. Carcinogenesis, 16, 3037–3043.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Boylston, T. D., Luedecke, L. O. & Shultz, T. D. (1999). Conjugated linoleic acid content of Cheddar-type cheeses as affected by processing. Journal of Food Science, 64, 874–878.

    Article  CAS  Google Scholar 

  • Liu, X., Li, H., Chen, Y. & Cao, Y. (2012). Method for screening of bacterial strains biosynthesizing specific conjugated linoleic acid isomers. Journal of Agricultural and Food Chemistry, 60, 9705–9710.

    Article  CAS  PubMed  Google Scholar 

  • Lock, A. & Garnsworthy, P. (2002). Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows’ milk. Animal Science, 74, 163–176.

    Article  CAS  Google Scholar 

  • Lock, A. L. & Garnsworthy, P. C. (2003). Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livestock Production Science, 79, 47–59.

    Article  Google Scholar 

  • Lock, A. L., Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids, 39, 1197–1206.

    Google Scholar 

  • Lock, A. L., Bauman, D. E. & Garnsworthy, P. C. (2003). Effects of milk yield and milk fat production on milk cis-9, trans-11 CLA and delta-9 desaturase activity. Journal of Dairy Science, 86, 245.

    Google Scholar 

  • Lock, A. L., Corl, B. A., Barbano, D. M., Bauman, D. E. & Ip, C. (2004). The anticarcinogenic effect of trans-11 18: 1 is dependent on its conversion to cis-9, trans-11 CLA by Δ9-desaturase in rats. Journal of Nutrition, 134, 2698–2704.

    Google Scholar 

  • Lock, A. L., Horne, C. A., Bauman, D. E. & Salter, A. M. (2005). Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. Journal of Nutrition, 135, 1934–1939.

    Google Scholar 

  • Lock, A., Harvatine, K., Drackley, J. & Bauman, D. E. (2006). Concepts of fat and fatty acid digestion in ruminants.

    Google Scholar 

  • Loor, J. J. & Herbein, J. H. (1998). Exogenous conjugated linoleic acid isomers reduce bovine milk fat concentration and yield by inhibiting de novo fatty acid synthesis. Journal of Nutrition, 128, 2411–2419.

    Google Scholar 

  • Loor, J. J. & Herbein, J. H. (2001). Alterations in blood plasma and milk fatty acid profiles of lactating Holstein cows in response to ruminal infusion of a conjugated linoleic acid mixture. Animal Research, 50, 463–476.

    Article  CAS  Google Scholar 

  • Lourenço, M., Ramos-Morales, E. & Wallace, R. (2010). The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal, 4, 1008–1023.

    Article  PubMed  CAS  Google Scholar 

  • Luna, P., de la Fuente, M. A. & Juarez, M. (2005). Conjugated linoleic acid in processed cheeses during the manufacturing stages. Journal of Agricultural and Food Chemistry, 53, 2690–2695.

    Article  CAS  PubMed  Google Scholar 

  • Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch, J. M., Lock, A. L., Dwyer, D. A., Noorbakhsh, R., Barbano, D. M. & Bauman, D. E. (2005). Flavor and stability of pasteurized milk with elevated levels of conjugated linoleic acid and vaccenic acid. Journal of Dairy Science, 88, 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz, M., Valicenti, A. & Holman, R. (1980). Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 618, 1–12.

    Article  CAS  Google Scholar 

  • Månsson, H. L. (2008). Fatty acids in bovine milk fat. Food and Nutrition Research, 52. https://doi.org/10.3402/fnr.v52i0.1821.

  • Maragkoudakis, P. A., Mountzouris, K. C., Rosu, C., Zoumpopoulou, G., Papadimitriou, K., et al. (2010). Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats – A preliminary study. International Journal of Food Microbiology, 141, S109–SS16.

    Google Scholar 

  • Martel, P. M., Bingham, C. M., McGraw, C. J., Baker, C. L., Morganelli, P. M., et al. (2006). S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312, 278–288.

    CAS  PubMed  Google Scholar 

  • McCann, S. E., Ip, C., Ip, M. M., McGuire, M. K., Muti, P., et al. (2004). Dietary intake of conjugated linoleic acids and risk of premenopausal and postmenopausal breast cancer, Western New York Exposures and Breast Cancer Study (WEB Study). Cancer Epidemiology and Prevention Biomarkers, 13, 1480–1484.

    CAS  Google Scholar 

  • McDonald, T. & Kinsella, J. (1973). Stearyl-CoA desaturase of bovine mammary microsomes. Archives of Biochemistry and Biophysics, 156, 223–231.

    Article  CAS  PubMed  Google Scholar 

  • McGowan, M. M., Eisenberg, B. L., Lewis, L. D., Froehlich, H. M., Wells, W. A., et al. (2013). A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue. Breast Cancer Research and Treatment, 138, 175–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod, R. S., LeBlanc, A. M., Langille, M. A., Mitchell, P. L. & Currie, D. L. (2004). Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. American Journal of Clinical Nutrition, 79, 1169S–1174S.

    Google Scholar 

  • Meir, K. S. & Leitersdorf, E. (2004). Atherosclerosis in the apolipoprotein E–deficient mouse: A decade of progress. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  • Meurens, M., Baeten, V., Yan, S. H., Mignolet, E. & Larondelle, Y. (2005). Determination of the conjugated linoleic acids in cow’s milk fat by Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry, 53, 5831–5835.

    Article  CAS  PubMed  Google Scholar 

  • Michaud, A. L., Yurawecz, M. P., Delmonte, P., Corl, B. A., Bauman, D. E. & Brenna, J. T. (2003). Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Analytical Chemistry, 75, 4925–4930.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A., Stanton, C., Murphy, J. & Devery, R. (2003). Conjugated linoleic acid (CLA)-enriched milk fat inhibits growth and modulates CLA-responsive biomarkers in MCF-7 and SW480 human cancer cell lines. British Journal of Nutrition, 90, 877–885.

    Article  CAS  PubMed  Google Scholar 

  • Mirzaii, S., Mansourian, M., Derakhshandeh-Rishehri, S.-M., Kelishadi, R. & Heidari-Beni, M. (2016). Association of conjugated linoleic acid consumption and liver enzymes in human studies: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition, 32, 166–173.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh, M., Faramarzi, E., Mahdavi, R., Nasirimotlagh, B. & Asghari, J. M. (2013). Effect of conjugated linoleic acid supplementation on inflammatory factors and matrix metalloproteinase enzymes in rectal cancer patients undergoing chemoradiotherapy. Integrative Cancer Therapies, 12, 496–502.

    Article  CAS  PubMed  Google Scholar 

  • Momchilova, S. M. & Nikolova-Damyanova, B. M. (2012). Advances in silver ion chromatography for the analysis of fatty acids and triacylglycerols-2001 to 2011. Analytical Sciences, 28, 837–844.

    Article  CAS  PubMed  Google Scholar 

  • Moon, C. D., Pacheco, D. M., Kelly, W. J., Leahy, S. C., Li, D., et al. (2008). Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. International Journal of Systematic and Evolutionary Microbiology, 58, 2041–2045.

    Google Scholar 

  • Moore, T. (1939). Spectroscopic changes in fatty acids: General. Biochemical Journal, 33, 1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, C., Hafliger, H., III, Mendivil, O., Sanders, S., Bauman, D. & Baumgard, L. (2004). Increasing amounts of conjugated linoleic acid (CLA) progressively reduces milk fat synthesis immediately postpartum. Journal of Dairy Science, 87, 1886–1895.

    Article  CAS  PubMed  Google Scholar 

  • Mosley, E. E., Powell, G. L., Riley, M. B. & Jenkins, T. C. (2002). Microbial biohydrogenation of oleic acid to trans isomers in vitro. Journal of Lipid Research, 43, 290–296.

    Google Scholar 

  • Munday, J. S., Thompson, K. G. & James, K. A. (1999). Dietary conjugated linoleic acids promote fatty streak formation in the C57BL/6 mouse atherosclerosis model. British Journal of Nutrition, 81, 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, S. P. & Allen, L. H. (2003). Nutritional importance of animal source foods. Journal of Nutrition, 133, 3932S–3935S.

    Google Scholar 

  • Muruz, H. & Çetinkaya, N. (2019). The effect of dairy cow feeding regime on functional milk production. International Advanced Researches and Engineering Journal, 3, 1–6.

    Google Scholar 

  • National Research Council Committee on Technological Options to Improve the Nutritional Attributes of Animal Products. (1988). Designing foods: Animal product options in the marketplace. Washington, DC: National Academies Press (US).

    Google Scholar 

  • Noone, E. J., Roche, H. M., Nugent, A. P. & Gibney, M. J. (2002). The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. British Journal of Nutrition, 88, 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Ntambi, J. M. (1999). Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. Journal of Lipid Research, 40, 1549–1558.

    CAS  PubMed  Google Scholar 

  • Ntambi, J. M. & Miyazaki, M. (2004). Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research, 43, 91–104.

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan, T. F., Faulkner, H., McAuliffe, S., O’Sullivan, M. G., Hennessy, D., et al. (2016a). Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. Journal of Dairy Science, 99, 9441–9460.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan, T. F., Hennessy, D., McAuliffe, S., Kilcawley, K. N., O’Donovan, M., et al. (2016b). Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, 99, 9424–9440.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan, T. F., Mannion, D. T., Hennessy, D., McAuliffe, S., O’Sullivan, M. G., et al. (2017). Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. Journal of Dairy Science, 100, 6053–6073.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan, T. F., Vazquez-Fresno, R., Serra-Cayuela, A., Dong, E., Mandal, R., et al. (2018). Pasture feeding changes the bovine rumen and milk metabolome. Metabolites, 8.

    Google Scholar 

  • O’Shea, M., Devery, R., Lawless, F., Murphy, J. & Stanton, C. (2000). Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells. Anticancer Research, 20, 3591–3601.

    PubMed  Google Scholar 

  • Offer, N. W., Marsden, M., Dixon, J., Speake, B. K. & Thacker, F. E. (1999). Effect of dietary fat supplements on levels of n-3 polyunsaturated fatty acids, trans acids and conjugated linoleic acid in bovine milk. Journal of Animal Science, 69, 613–625.

    Google Scholar 

  • Offer, N., Marsden, M. & Phipps, R. (2001). Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Animal Science, 73, 533–540.

    Google Scholar 

  • Ozols, J. (1997). Degradation of hepatic stearyl CoA Δ9-desaturase. Molecular Biology of the Cell, 8, 2281–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmquist, D., Beaulieu, A. D. & Barbano, D. (1993). Feed and animal factors influencing milk fat composition. Journal of Dairy Science, 76, 1753–1771.

    Article  CAS  PubMed  Google Scholar 

  • Palmquist, D., St-Pierre, N. & McClure, K. (2004). Tissue fatty acid profiles can be used to quantify endogenous rumenic acid synthesis in lambs. Journal of Nutrition, 134, 2407–2414.

    Google Scholar 

  • Palmquist, D. L., Lock, A. L., Shingfield, K. J. & Bauman, D. E. (2005). Biosynthesis of conjugated linoleic acid in ruminants and humans. Advances in Food and Nutrition Research, 50, 179–217.

    Article  CAS  PubMed  Google Scholar 

  • Pariza, M. W., Ashoor, S. H., Chu, F. S. & Lund, D. B. (1979). Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Letters, 7, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y., Storkson, J. M., Ntambi, J. M., Cook, M. E., Sih, C. J. & Pariza, M. W. (2000). Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1486, 285–292.

    CAS  Google Scholar 

  • Parodi, P. W. (1977). Conjugated octadecadienoic acids of milk fat. Journal of Dairy Science, 60, 1550–1553.

    Article  CAS  Google Scholar 

  • Parodi, P. W. (2003). Conjugated linoleic acid in food. In Sebedio, J. Christie, W. W. Adlof, R., (Eds.). Advances in conjugated linoleic acid research, (pp. 152–179). Champaign: AOCS Publishing.

    Google Scholar 

  • Parodi, P. W. (2004). Milk fat in human nutrition. Australian Journal of Dairy Technology, 59, 3–59.

    CAS  Google Scholar 

  • Perfield, J., II, Bernal-Santos, G., Overton, T. & Bauman, D. (2002). Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. Journal of Dairy Science, 85, 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  • Perfield, J., II, Sæbø, A. & Bauman, D. (2004a). Use of conjugated linoleic acid (CLA) enrichments to examine the effects of trans-8, cis-10 CLA, and cis-11, trans-13 CLA on milk-fat synthesis. Journal of Dairy Science, 87, 1196–1202.

    Article  CAS  PubMed  Google Scholar 

  • Perfield, J., II, Lock, A., Pfeiffer, A. & Bauman, D. (2004b). Effects of amide-protected and lipid-encapsulated conjugated linoleic acid (CLA) supplements on milk fat synthesis. Journal of Dairy Science, 87, 3010–3016.

    Article  CAS  PubMed  Google Scholar 

  • Perfield, J. W., Sæbø, A. & Bauman, D. E. (2004c). Use of conjugated linoleic acid (CLA) enrichment to examine the effects of trans-8, cis-10 CLA, and cis-11, trans-13 CLA on milk-fat synthesis. Journal of Animal Science, 87, 1196–1202.

    Google Scholar 

  • Perfield, J., II, Delmonte, P., Lock, A., Yurawecz, M. & Bauman, D. (2006). Trans-10, trans-12 conjugated linoleic acid does not affect milk fat yield but reduces Δ9-desaturase index in dairy cows. Journal of Dairy Science, 89, 2559–2566.

    Article  CAS  PubMed  Google Scholar 

  • Perfield Ii, J., Lock, A., Griinari, J., Sæbø, A., Delmonte, P., et al. (2007). Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. Journal of Dairy Science, 90, 2211–2218.

    Article  CAS  Google Scholar 

  • Peterson, D., Baumgard, L. & Bauman, D. (2002a). Milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid (CLA). Journal of Dairy Science, 85, 1764–1766.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, D. G., Kelsey, J. A. & Bauman, D. E. (2002b). Analysis of variation in cis-9, trans-11 conjugated linoleic acid (CLA) in milk fat of dairy cows. Journal of Dairy Science, 85, 2164–2172.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, D. G., Matitashvili, E. A. & Bauman, D. E. (2003). Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. Journal of Nutrition, 133, 3098–3102.

    Google Scholar 

  • Peterson, D. G., Matitashvili, E. A. & Bauman, D. E. (2004). The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. Journal of Nutrition, 134, 2523–2527.

    Google Scholar 

  • Petri, R. M., Mapiye, C., Dugan, M. E. & McAllister, T. A. (2014). Subcutaneous adipose fatty acid profiles and related rumen bacterial populations of steers fed red clover or grass hay diets containing flax or sunflower-seed. PLoS One, 9, e104167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrik, M. B. H., McEntee, M. F., Johnson, B. T., Obukowicz, M. G. & Whelan, J. (2000). Highly unsaturated (n-3) fatty acids, but not α-linolenic, conjugated linoleic or γ-linolenic acids, reduce tumorigenesis in Apc Min/+ mice. Journal of Nutrition, 130, 2434–2443.

    Google Scholar 

  • Pfeuffer, M., Fielitz, K., Laue, C., Winkler, P., Rubin, D., et al. (2011). CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. Journal of the American College of Nutrition, 30, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Phelps, R. A., Shenstone, F., Kemmerer, A. & Evans, R. (1965). A review of cyclopropenoid compounds: Biological effects of some derivatives. Poultry Science, 44, 358–394.

    Article  CAS  PubMed  Google Scholar 

  • Pierre, A.-S., Minville-Walz, M., Fèvre, C., Hichami, A., Gresti, J., et al. (2013). Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831, 759–768.

    CAS  Google Scholar 

  • Piperova, L. S., Teter, B. B., Bruckental, I., Sampugna, J., Mills, S. E., et al. (2000). Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat–depressing diet. Journal of Nutrition, 130, 2568–2574.

    Google Scholar 

  • Piperova, L. S., Sampugna, J., Teter, B. B., Kalscheur, K. F., Yurawecz, M. P., et al. (2002). Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. Journal of Nutrition, 132, 1235–1241.

    Google Scholar 

  • Piperova, L., Moallem, U., Teter, B., Sampugna, J., Yurawecz, M., et al. (2004). Changes in milk fat in response to dietary supplementation with calcium salts of trans-18: 1 or conjugated linoleic fatty acids in lactating dairy cows. Journal of Dairy Science, 87, 3836–3844.

    Article  CAS  PubMed  Google Scholar 

  • Pollard, M. R., Gunstone, F. D., James, A. T. & Morris, L. J. (1980). Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids, 15, 306–314.

    Article  CAS  PubMed  Google Scholar 

  • Precht, D. & Molkentin, J. (1997). Trans-geometrical and positional isomers of linoleic acid including conjugated linoleic acid (CLA) in German milk and vegetable fats. European Journal of Lipid Science and Technology, 99, 319–326.

    Google Scholar 

  • Prema, D., Pilfold, J., Krauchi, J., Church, J., Donkor, K. & Cinel, B. (2013). Rapid determination of total conjugated linoleic acid content in select Canadian cheeses by H-1 NMR spectroscopy. Journal of Agricultural and Food Chemistry, 61(41), 9915–9921.

    Article  CAS  PubMed  Google Scholar 

  • Privé, F., Newbold, C. J., Kaderbhai, N. N., Girdwood, S. G., Golyshina, O. V., et al. (2015). Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Applied Microbiology and Biotechnology, 99, 5475–5485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proell, J. M., Mosley, E. E., Powell, G. L. & Jenkins, T. C. (2002). Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by ruminal microbes. Journal of Lipid Research, 43, 2072–2076.

    Google Scholar 

  • Ramaswamy, N., Baer, R. J., Schingoethe, D. J., Hippen, A. R., Kasperson, K. M. & Whitlock, L. A. (2001). Composition and flavor of milk and butter from cows fed fish oil, extruded soybeans, or their combination. Journal of Dairy Science, 84, 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  • Reh, W. A., Maga, E. A., Collette, N. M., Moyer, A., Conrad-Brink, J. S., et al. (2004). Hot topic: Using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. Journal of Dairy Science, 87, 3510–3514.

    Article  CAS  PubMed  Google Scholar 

  • Rickert, R., Steinhart, H., Fritsche, J., Sehat, N., Yurawecz, M. P., Mossoba, M. M., Roach, J.A.G., Eulitz, K., Ku, Y. & Kramer, J.K.G. (1999). Enhanced resolution of conjugated linoleic acid isomers by tandem-column silver-ion high performance liquid chromatography. Journal of High Resolution Chromatography, 22, 144–148.

    Google Scholar 

  • Riel, R. R. (1963). Physico-chemical characteristics of Canadian milk fat. Unsaturated fatty acids. Journal of Dairy Science, 46, 102–106.

    Article  CAS  Google Scholar 

  • Ritzenthaler, K. L., McGuire, M. K., Falen, R., Shultz, T. D., Dasgupta, N. & McGuire, M. A. (2001). Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. Journal of Nutrition, 131, 1548–1554.

    Google Scholar 

  • Rodriguez-Alcala, L. M. & Fontecha, J. (2007). Hot topic: Fatty acid and conjugated linoleic acid (CLA) isomer composition of commercial CLA-fortified dairy products: Evaluation after processing and storage. Journal of Dairy Science, 90, 2083–2090.

    Article  CAS  PubMed  Google Scholar 

  • Sæbø, A., Perfield, J., Delmonte, P., Yurawecz, M., Lawrence, P., et al. (2005a). Milk fat synthesis is unaffected by abomasal infusion of the conjugated diene 18∶ 3 isomers cis-6, trans-10, cis-12 and cis-6, trans-8, cis-12. Lipids, 40, 89–95.

    Article  PubMed  Google Scholar 

  • Sæbø, A., Sæbø, P. C., Griinari, J. M. & Shingfield, K. J. (2005b). Effect of abomasal infusions of geometric isomers of 10, 12 conjugated linoleic acid on milk fat synthesis in dairy cows. Lipids, 40, 823–832.

    Article  PubMed  Google Scholar 

  • Samková, E., Koubová, J., Hasoňová, L., Hanuš, O., Kala, R., et al. (2018). Joint effects of breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 68, 98–107.

    Google Scholar 

  • Schennink, A., Stoop, W. M., Visker, M. W., Heck, J. M. L., Bovenhuis, H., et al. (2007). DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Animal Genetics, 38, 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Schennink, A., Heck, J. M., Bovenhuis, H., Visker, M. H., van Valenberg, H. J. & van Arendonk, J. A. (2008). Milk fatty acid unsaturation: Genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1). Journal of Dairy Science, 91, 2135–2143.

    Article  CAS  PubMed  Google Scholar 

  • Scimeca, J. A. (1999). Cancer inhibition in animals. Advances in Conjugated Linoleic Acid Research, 1, 420–443.

    CAS  Google Scholar 

  • Sébédio, J.-L., Christie, W. W. & Adlof, R. (2003). In Sebedio, J. Christie, W. W. Adolf, R. (Eds.). Advances in conjugated linoleic acid research. Champaign: AOCS Publishing.

    Google Scholar 

  • Sehat, N., Kramer, J. K., Mossoba, M. M., Yurawecz, M. P., Roach, J. A., et al. (1998). Identification of conjugated linoleic acid isomers in cheese by gas chromatography, silver ion high performance liquid chromatography and mass spectral reconstructed ion profiles. Comparison of chromatographic elution sequences. Lipids, 33, 963–971.

    Article  CAS  PubMed  Google Scholar 

  • Selberg, K., Lowe, A., Staples, C., Luchini, N. & Badinga, L. (2004). Production and metabolic responses of periparturient Holstein cows to dietary conjugated linoleic acid and trans-octadecenoic acids. Journal of Dairy Science, 87, 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Shantha, N. C. & Decker, E. A. (1995). Conjugated linoleic acid concentrations in cooked beef containing antioxidants and hydrogen donors. Journal of Food Lipids, 2, 57–64.

    Article  CAS  Google Scholar 

  • Shantha, N. C., Decker, E. A. & Ustunol, Z. (1992). Conjugated linoleic acid concentration in processed cheese. Journal of the American Oil Chemists' Society, 69, 425–428.

    Article  CAS  Google Scholar 

  • Shen, X., Dannenberger, D., Nuernberg, K., Nuernberg, G. & Zhao, R. (2011). Trans-18: 1 and CLA isomers in rumen and duodenal digesta of bulls fed n-3 and n-6 PUFA-based diets. Lipids, 46, 831–841.

    Google Scholar 

  • Shimano, H. (2001). Sterol regulatory element-binding proteins (SREBPs): Transcriptional regulators of lipid synthetic genes. Progress in Lipid Research, 40, 439–452.

    Article  CAS  PubMed  Google Scholar 

  • Shingfield, K., Ahvenjärvi, S., Toivonen, V., Ärölä, A., Nurmela, K., et al. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77, 165–179.

    Article  CAS  Google Scholar 

  • Shingfield, K. J., Reynolds, C. K., Hervas, G., Griinari, J. M., Grandison, A. S. & Beever, D. E. (2006). Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. Journal of Dairy Science, 89, 714–732.

    Article  CAS  PubMed  Google Scholar 

  • Shingfield, K. J., Ahvenjärvi, S., Toivonen, V., Vanhatalo, A., Huhtanen, P. & Griinari, J. M. (2008). Effect of incremental levels of sunflower-seed oil in the diet on ruminal lipid metabolism in lactating cows. British Journal of Nutrition, 99, 971–983.

    Article  CAS  PubMed  Google Scholar 

  • Shingfield, K. J., Bonnet, M. & Scollan, N. D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7(Suppl 1), 132–162.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi, R., Iwakiri, R., Fujise, T., Kuroki, T., Kakimoto, T., et al. (2010). Conjugated linoleic acid suppresses colon carcinogenesis in azoxymethane-pretreated rats with long-term feeding of diet containing beef tallow. Journal of Gastroenterology, 45, 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Shivani, S., Srivastava, A., Shandilya, U., Kale, V. & Tyagi, A. (2015). Dietary supplementation of Butyrivibrio fibrisolvens alters fatty acids of milk and rumen fluid in lactating goats: Alteration of fatty acid profile of goat milk. Journal of the Science of Food and Agriculture, 96(5), 1716–1722.

    Google Scholar 

  • Slots, T., Butler, G., Leifert, C., Kristensen, T., Skibsted, L. H. & Nielsen, J. H. (2009). Potentials to differentiate milk composition by different feeding strategies. Journal of Dairy Science, 92, 2057–2066.

    Article  CAS  PubMed  Google Scholar 

  • Sluijs, I., Plantinga, Y., De Roos, B., Mennen, L. I. & Bots, M. L. (2009). Dietary supplementation with cis-9, trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. American Journal of Clinical Nutrition, 91, 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Soel, S. M., Choi, O. S., Bang, M. H., Park, J. H. Y. & Kim, W. K. (2007). Influence of conjugated linoleic acid isomers on the metastasis of colon cancer cells in vitro and in vivo. Journal of Nutritional Biochemistry, 18, 650–657.

    Google Scholar 

  • Stanton, C., Lawless, F., Kjellmer, G., Harrington, D., Devery, R., et al. (1997). Dietary influences on bovine milk cis- 9, trans-11-conjugated linoleic acid content. Journal of Food Science, 62, 1083–1086.

    Google Scholar 

  • Stanton, C., Murphy, J., McGrath, E., Devery, R. (2003). Animal feeding strategies for conjugated linoleic acid enrichment of milk. In Sebedio, J. Christie, W. W. Adlof, R. (Eds.). Advances in conjugated linoleic acid research (pp. 123–145), Champaign: AOCS Publishing.

    Google Scholar 

  • Sun, C., Black, B. A., Zhao, Y. Y., Ganzle, M. G. & Curtis, J. M. (2013). Identification of conjugated linoleic acid (CLA) isomers by silver ion-liquid chromatography/in-line ozonolysis/mass spectrometry (Ag+-LC/O3-MS). Analytical Chemistry, 85, 7345–7352.

    Google Scholar 

  • Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., et al. (2004). Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 15, 142–148.

    Google Scholar 

  • Tao, F. & Ngadi, M. (2017). Applications of spectroscopic techniques for fat and fatty acids analysis of dairy foods. Current Opinion in Food Science, 17, 100–112.

    Article  Google Scholar 

  • Theurer, M. L., Block, E., Sanchez, W. K. & McGuire, M. A. (2009). Calcium salts of polyunsaturated fatty acids deliver more essential fatty acids to the lactating dairy cow. Journal of Dairy Science, 92, 2051–2056.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, H., Zhu, Z., Banni, S., Darcy, K., Loftus, T. & Ip, C. (1997). Morphological and biochemical status of the mammary gland as influenced by conjugated linoleic acid: Implication for a reduction in mammary cancer risk. Cancer Research, 57, 5067–5072.

    CAS  PubMed  Google Scholar 

  • Toomey, S., Roche, H., Fitzgerald, D. & Belton, O. (2003). Regression of pre-established atherosclerosis in the apoE−/− mouse by conjugated linoleic acid. London: Portland Press Limited.

    Book  Google Scholar 

  • Tricon, S., Burdge, G. C., Kew, S., Banerjee, T., Russell, J. J., et al. (2004). Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. American Journal of Clinical Nutrition, 80, 614–620.

    Article  CAS  PubMed  Google Scholar 

  • Tsiafoulis, C. G., Papaemmanouil, C., Alivertis, D., Tzamaloukas, O., Miltiadou, D., et al. (2019). NMR-based muetabolomics of the lipid fraction of organic and conventional bovine milk. Molecules, 24.

    Google Scholar 

  • Turpeinen, A. M., Mutanen, M., Aro, A., Salminen, I., Basu, S., et al. (2002). Bioconversion of vaccenic acid to conjugated linoleic acid in humans. American Journal of Clinical Nutrition, 76, 504–510.

    Article  CAS  PubMed  Google Scholar 

  • Urquhart, P., Parkin, S. M., Rogers, J. S., Bosley, J. A. & Nicolaou, A. (2002). The effect of conjugated linoleic acid on arachidonic acid metabolism and eicosanoid production in human saphenous vein endothelial cells. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1580, 150–160.

    CAS  Google Scholar 

  • Verhulst, A., Janssen, G., Parmentier, G. & Eyssen, H. (1987). Isomerization of polyunsaturated long chain fatty acids by propionibacteria. Systematic and Applied Microbiology, 9, 12–15.

    Article  CAS  Google Scholar 

  • Voorrips, L. E., Brants, H. A., Kardinaal, A. F., Hiddink, G. J., van den Brandt, P. A. & Goldbohm, R. A. (2002). Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: The Netherlands Cohort Study on Diet and Cancer. American Journal of Clinical Nutrition, 76, 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Wahle, K. (1974). Desaturation of long-chain fatty acids by tissue preparations of the sheep, rat and chicken. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 48, 87–105.

    Article  CAS  Google Scholar 

  • Ward, R. J., Travers, M. T., Richards, S. E., Vernon, R. G., Salter, A. M., et al. (1998). Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1391, 145–156.

    Article  CAS  Google Scholar 

  • Werner, S. A., Luedecke, L. O. & Shultz, T. D. (1992). Determination of conjugated linoleic acid content and isomer distribution in three Cheddar-type cheeses: Effects of cheese cultures, processing, and aging. Journal of Agricultural and Food Chemistry, 40, 1817–1821.

    Article  CAS  Google Scholar 

  • White, S. L., Bertrand, J. A., Wade, M. R., Washburn, S. P., Green, J. T., Jr. & Jenkins, T. C. (2001). Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. Journal of Dairy Science, 84, 2295–2301.

    Article  CAS  PubMed  Google Scholar 

  • Whitlock, L. A., Schingoethe, D. J., Hippen, A. R., Kalscheur, K. F., Baer, R. J., et al. (2002). Fish oil and extruded soybeans fed in combination increase conjugated linoleic acids in milk of dairy cows more than when fed separately. Journal of Dairy Science, 85, 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, T., Nicolosi, R., Chrysam, M. & Kritchevsky, D. (2000). Conjugated linoleic acid reduces early aortic atherosclerosis greater than linoleic acid in hypercholesterolemic hamsters. Nutrition Research, 20, 1795–1805.

    Article  CAS  Google Scholar 

  • Wong, M. W., Chew, B., Wong, T., Hosick, H., Boylston, T. & Shultz, T. (1997). Effects of dietary conjugated linoleic acid on lymphocyte function and growth of mammary tumors in mice. Anticancer Research, 17, 987–993.

    CAS  PubMed  Google Scholar 

  • Yamasaki, M., Nou, S., Tachibana, H. & Yamada, K. (2005). Cytotoxity of the trans10, cis12 isomer of conjugated linoleic acid on rat hepatoma and its modulation by other fatty acids, tocopherol, and tocotrienol. In Vitro Cellular & Developmental Biology. Animal, 41, 239.

    Google Scholar 

  • Yokoyama, M. T. & Davis, C. (1971). Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strain B25, a rumen spirochete. Journal of Bacteriology, 107, 519–527.

    Google Scholar 

  • Yu, Y., Correll, P. & Heuvel, J. V. (2002). Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: Evidence for a PPARγ-dependent mechanism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1581, 89–99.

    CAS  Google Scholar 

  • Yurawecz, M. P., Roach, J. A., Sehat, N., Mossoba, M. M., Kramer, J. K., et al. (1998). A new conjugated linoleic acid isomer, 7 trans, 9 cis-octadecadienoic acid, in cow milk, cheese, beef and human milk and adipose tissue. Lipids, 33, 803–809.

    Google Scholar 

  • Yyrawecz, M. P., Mossoba, M. M., Kramer, J. K. G., Pariza, M. W. & Nelson, G. (1999). Methylation procedures for conjugated linoleic acid. Advances in Conjugated Linoleic Acid Research, 1, 64–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stanton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauman, D.E., Lock, A.L., Conboy Stephenson, R., Linehan, K., Ross, R.P., Stanton, C. (2020). Conjugated Linoleic Acid: Biosynthesis and Nutritional Significance. In: McSweeney, P.L.H., Fox, P.F., O'Mahony, J.A. (eds) Advanced Dairy Chemistry, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48686-0_3

Download citation

Publish with us

Policies and ethics