Skip to main content
Log in

Effect of dexamethasone on the fatty acid composition of total liver microsomal lipids and phosphatidylcholine molecular species

  • Articles
  • Published:
Lipids

Abstract

Dexamethasone depresses Δ6 and Δ5 and increases Δ9 desaturase and synthase activities. Therefore, we investigated the effect on the fatty acid composition of microsomal liver lipids and phosphatidylcholine (PtdCho) molecular species. After 15 d of treatment we found a notable decrease in arachidonic acid, a small decrease in stearic acid, and increases of linoleic, oleic, palmitoleic, and palmitic acids in liver microsomal total lipids and PtdCho. The study of the distribution of the PtdCho molecular species indicated that 18∶0/20∶4n−6, 16∶0/20∶4n−6, and 16∶0/18∶2n−6 predominated in the control animals. Dexamethasone, as expected because of its depressing effect on arachidonic acid synthesis and activation of oleic and palmitic acid synthesis, evoked a very significant decrease in 18∶0/20∶4n−6 PtdCho (P<0.001) and an important increase in 16∶0/18∶2n−6. The invariability of 16∶0/20∶4n−6 PtdCho could be related to the antagonistic effect of arachidonic and palmitic acid synthesis. PtdCho species containing oleic acid were not significant. The bulk fluidity and dynamic properties of the microsomal lipid bilayer measured by fluorometry using the probes 1,6-diphenyl-1,3,5-hexatriene and 4-trimethylammonium-phenyl-6-phenyl-1,3,5-hexatriene showed no significant modification, probably owing to a compensatory effect of the different molecular species, but changes of particular domains not detected by this technique are possible. However, the extremely sensitive Laurdan detected increased lipid packing in the less-fluid domains of the polar-nonpolar interphase of the bilayer, possibly evoked by the change of molecular species and cholesterol/phospholipid ratio. The most important effect found is the decrease of arachidonic acid pools in liver phospholipids as one of the corresponding causes of dexamethasone-dependent pharmacological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

1,6-diphenyl-1,3,5-hexatriene

Δτ:

differential polarized phase lifetime

ELSD:

evaporative light-scattering detector

GLC:

gas-liquid chromatography

GP:

generalized polarization

HPLC:

high-performance liquid chromatography

HTC:

hepatoma tissue culture

Laurdan-6-lauroyl-2:

4-dimethyl aminonaphthalene

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdIns:

phosphatidylinositol

r :

limiting anisotropy

r 0 :

fundamental anisotropy

r s :

steady-state fluorescence anisotropy

S:

order parameter

τ:

lifetime

τ P :

phase lifetime

τ M :

modulation lifetime

τ R :

rotational correlation time

TAT:

tyrosine aminotransferase

TMADPH:

1-(4-trimethylammonium phenyl)-6-phenyl-1,3,5-hexatriene

References

  1. Brenner, R.R. (1977) Regulatory Function of Δ6 Desaturase. Key Enzyme of Polyunsaturated Fatty Acid Synthesis, Adv. Exp. Med. Biol. 83, 85–101.

    Article  PubMed  CAS  Google Scholar 

  2. Mercuri, O., Peluffo, R.O., and Brenner, R.R. (1966) Depression of Microsomal Desaturation of Linoleci to γ-Linolenic Acid in the Alloxan Diabetic Rat, Biochim. Biophys. Acta 116, 409–411.

    PubMed  CAS  Google Scholar 

  3. Mercuri, O., Peluffo, R.O., and Brenner, R.R. (1967) Effect of Insulin on the Oxidative Desaturation of α-Linolenic, Oleic, and Palmitic Acids, Lipids 2, 284–285.

    CAS  PubMed  Google Scholar 

  4. Brenner, R.R. (1989) Factors Influencing Fatty Acid Chain Elongation and Desaturation, in The Role of Fats in Human Nutrition (Vergroesen, A.J., and Crawford, M., eds.), pp. 45–79, Academic Press, London.

    Google Scholar 

  5. Brenner, R.R. (1990) Endocrine Control of Fatty Acid Desaturation, Biochem. Soc. Transact. 18, 773–775.

    CAS  Google Scholar 

  6. Brenner, R.R., Peluffo, R.O., Mercuri, O., and Restelli, M.A. (1968) Effect of Arachidonic Acid in the Alloxan-Diabetic Rat, Am. J. Physiol. 215, 63–70.

    PubMed  CAS  Google Scholar 

  7. Gellhorn, A., and Benjamin, W. (1964) The Intracellular Localization of an Enzymatic Defect of Lipid Metabolism in Diabetic Rats, Biochim. Biophys. Acta 84, 167–175.

    PubMed  CAS  Google Scholar 

  8. de Gómez Dumm, I.N.T., de Alaniz, M.J.T., and Brenner, R.R. (1979) Effect of Glucocorticoids on the Oxidative Desaturation of Fatty Acids by Rat Liver Microsomes, J. Lipid Res. 20, 834–839.

    PubMed  Google Scholar 

  9. Marra, C.A., de Alaniz, M.J.T., and Brenner, R.R. (1986) Dexamethasone Blocks Arachidonate Biosynthesis in Isolated Hepatocytes and Cultured Hepatoma Cells, Lipids 21, 212–219.

    PubMed  CAS  Google Scholar 

  10. Marra, C.A., de Alaniz, M.J.T., and Brenner, R.R. (1986) Modulation of Δ6 and Δ5 Rat Liver Microsomal Desaturase Activities by Dexamethasone-Induced Factor, Biochim. Biophys. Acta 879, 388–393.

    PubMed  CAS  Google Scholar 

  11. Marra, C.A., de Alaniz, M.J.T., and Brenner, R.R. (1988) Effect of Various Steroids on the Biosynthesis of Arachidonic Acid in Isolated Hepatocytes and HTC Cells, Lipids 23, 1053–1058.

    PubMed  CAS  Google Scholar 

  12. Marra, C.A., and de Alaniz, M.J.T. (1990) Mineralocorticoids Modify Rat Liver Δ6 Desaturase Activity and Other Parameters of Lipid Metabolism, Biochem. Int. 22, 483–493.

    PubMed  CAS  Google Scholar 

  13. de Alaniz, M.J.T., and Marra, C.A. (1992) Glucocorticoid and Mineralocorticoid Hormones Depress Liver Δ5 Desaturase Activity Through Different Mechanisms, Lipids 27, 599–604.

    PubMed  Google Scholar 

  14. Marra, C.A., de Alaniz, M.J.T., and Brenner, R.R. (1988) A Dexamethasone-Induced Protein Stimulates Δ9 Desaturase Activity in Rat Liver Microsomes, Biochim. Biophys. Acta 958, 93–98.

    PubMed  CAS  Google Scholar 

  15. Marra, C.A., and de Alaniz, M.J.T. (1991) 11-Deoxycorticosterone an Inducer of a Factor Stimulating Δ9 Desaturase Activity in Liver Microsomes, Acta Physiol. Pharmacol Ther. Latinoam. 41, 277–285.

    PubMed  CAS  Google Scholar 

  16. Catalá, A., Nervi, A.M., and Brenner, R.R. (1975) Separation of a Protein Factor Necessary for the Oxidative Desaturation of Fatty Acids in the Rat, J. Biol. Chem. 250, 7481–7484.

    PubMed  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  18. Dradmonstone, T.I. (1966) Assay of Tyrosine Transaminase Activity by Conversion of p-Hydroxy-phenylpyruvate to p-Hydroxy-benzaldehyde, Anal. Biochem. 16, 395–401.

    Article  Google Scholar 

  19. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Huang, J.C., Chen, C.P., Wefler, V., and Raftery, A. (1961) A Stable Reagent for the Lieberman-Buchard Reaction. Application to Rapid Serum Cholesterol Determination, Anal. Chem. 33, 1405–1406.

    Article  CAS  Google Scholar 

  21. Gomori, G. (1942) A Modification of the Colorimetric Phosphorus Determination for Use with the Photoelectric Colorimeter, J. Lab. Clin. Med. 27, 955–960.

    CAS  Google Scholar 

  22. Letter, W.S. (1992) A Rapid Method for Phospholipid Class Separation by HPLC Using an Evaporative Light-Scattering Detector, J. Liq. Chromatogr. 15, 253–266.

    CAS  Google Scholar 

  23. Browers, J.F.M., Gadella, B.M., Lambert, M.G., Van Gold, L.M.G., and Tielens, A.G.M. (1998) Quantitative Analysis of Phosphatidyl Choline Molecular Species Using HPLC and Light-Scattering Detection, J. Lipid Res. 39, 344–353.

    Google Scholar 

  24. Lakowicz, J.R., Prendergast, F.G., and Hogen, D. (1979) Differential Polarized Phase Fluorometric Investigations of Diphenylhexatriene in Lipid Bilayers. Quantitation of Hindered Depolarizing Rotations, Biochemistry 18, 508–519.

    Article  PubMed  CAS  Google Scholar 

  25. Lakowicz, J.R. (1983) Principles of Fluorescence Spectroscopy, pp. 51–91, Plenum Press New York.

    Google Scholar 

  26. Tricerri, M.A., Garda, H.A., and Brenner, R.R. (1994) Lipid Chain Order and Dynamics at Differential Bilayer Depths in Liposomes of Several Phosphatidyl Cholines Using Differential Polarized Phase Fluorescence, Chem. Phys. Lipids 71, 61–72.

    Article  PubMed  CAS  Google Scholar 

  27. Garda, H.A., Bernasconi, A.M., and Brenner, R.R. (1994) Possible Compensation of Structural and Viscotropic Properties in Hepatic Microsomes and Erythrocyte Membranes of Rats with Essential Fatty Acid Deficiency, J. Lipid Res. 35, 1367–1377.

    PubMed  CAS  Google Scholar 

  28. Rodríguez, S., Garda, H.A., Heinzen, H., and Moyna, P. (1997) Effect of Plant Monofunctional Pentacyclictriterpenes on the Dynamic and Structural Properties of Dipalmitoyl Phosphatidyl Choline Bilayers, Chem. Phys. Lipids 89, 119–130.

    Article  Google Scholar 

  29. Spencer, R.D., and Weber, G. (1970) Influence of Brownian Rotations and Energy Transfer upon the Measurements of Fluorescence Lifetime, J. Chem. Phys. 52, 1654–1663.

    Article  CAS  Google Scholar 

  30. Lakowicz, J.R., Cherek, H., and Bevan, D.R. (1980) Demonstration of Nanosecond Dipolar Relaxation in Biopolymers by Inversion of the Apparent Fluorescence Phase Shift and Demodulation Lifetimes, J. Biol. Chem. 255, 4403–4406.

    PubMed  CAS  Google Scholar 

  31. Lakowicz, J.R., and Cherek, H. (1988) Dipolar Relaxation in Proteins on the Nanosecond Timescale Observed by Wavelength Resolved Phase Fluorometry of Tryptophan Fluorescence, J. Biol. Chem. 255, 831–834.

    Google Scholar 

  32. Weber, G. (1978) Limited Rotational Motions: Recognition by Differential Phase Fluorometry, Acta Phys. Pol. A 54, 173–179.

    Google Scholar 

  33. Garda, H.A., Bernasconi, A.M., and Brenner, R.R. (1994) Influence of Membrane Proteins on Lipid Matrix Structure and Dynamics. A Differential Polarized Phase Fluorometry Study in Rat Liver Microsomes and Erythrocyte Membranes, An. Asoc. Quím. Argent. 82, 305–323.

    CAS  Google Scholar 

  34. Bernasconi, A.M., Garda, H.A., and Brenner, R.R. (2000) Dietary Cholesterol Induces Changes in Molecular Species of Hepatic Microsomal Phosphatidylcholine, Lipids 35, 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  35. Garda, H.A., Bernasconi, A.M., Aguilar, F., Soto, M.A., and Sotomayor, C.P. (1997) Effect of Polyunsaturated Fatty Acid Deficiency on Dipole Relaxation in the Membrane Interface of Rat Liver Microsomes, Biochim. Biophys. Acta 1323, 97–104.

    Article  PubMed  CAS  Google Scholar 

  36. Brenner, R.R., Bernasconi, A.M., and Garda, H.A. (2000) Effect of Experimental Diabetes on the Fatty Acid Composition, Molecular Species of Phosphatidylcholine and Physical Properties of Hepatic Microsomal Membranes, Prostaglandins, Leukot. Essent. Fatty Acids 63, 167–176.

    Article  CAS  Google Scholar 

  37. Garda, H.A., Bernasconi, A.M., Tricerri, M.A., and Brenner, R.R. (1997) Molecular Species of Phosphoglycerides in Liver Microsomes of Rats Fed a Fat-Free Diet, Lipids 32, 507–513.

    Article  PubMed  CAS  Google Scholar 

  38. Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M., and Gratton, E. (1991) Quantitation of Lipid Phases in Phospholipid Vesicles by the Generalized Polarization of Laurdan Fluorescence, Biophys. J. 60, 179–189.

    PubMed  CAS  Google Scholar 

  39. Parasassi, T., De Stasio, G., D’Ubaldo, A., and Gratton, E. (1990) Phase Fluctuation in Phospholipid Membranes Revealed by Laurdan Fluorescence, Biophys. J. 57, 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  40. Parasassi, T., Loiero, M., Raimondi, M., Ravagnan, G., and Gratton, E. (1993) Absence of Lipid Gel-Phase Domains in Seven Mammalian Cell Lines and in Four Primary Cell Types, Biochim. Biophys. Acta 153, 143–154.

    Google Scholar 

  41. Ntambi, J., Buhrow, S.A., Kaestner, K.H., Christy, R.J., Sibley, E., Kelly, T.J., Jr., and Lane, M.D. (1988) Differentiation-Induced Gene Expression in 3T3-L1 Preadipocytes. Characterization on a Differently Expressed Gene Encoding Stearoyl-CoA Desaturase, J. Biol. Chem. 263, 17291–173300.

    PubMed  CAS  Google Scholar 

  42. Thiede, M.A., and Stritmatter, P. (1985) The Induction and Characterization of Rat Liver Stearoyl-CoA Desaturase in RNA, J. Biol. Chem. 260, 14459–14463.

    PubMed  CAS  Google Scholar 

  43. Ntambi, J.M. (1995) The Regulation of Stearoyl-CoA Desaturase (SCD), Prog. Lipid Res. 34, 139–150.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, Y.C., Gómez, F.E., Fox, B.G., and Ntambi, J.M. (2000) Differential Regulation of Stearoyl-CoA Desaturase Genes by Thiazolidinediones in 3T3-L1 Adipocytes, J. Lipid Res. 41, 1310–1316.

    PubMed  CAS  Google Scholar 

  45. Marra, C.A., and de Alaniz, M.J.T. (1992) Half-Life of Steroid Induced-Protein That Regulates Fatty Acid Desaturation Activity, Med. Sci. Res. 20, 791–793.

    CAS  Google Scholar 

  46. Pope, T.S., Smart, D.A., and Rooney, S.A. (1988) Hormonal Effects on Fatty Acid Synthase in Cultured Fetal Rat Lung; Induction by Dexamethasone and Inhibition of Activity by Triiodothyronine, Biochim. Biophys. Acta 959, 169–177.

    PubMed  Google Scholar 

  47. González, L.W., Ertsey, R., Ballard, P.L., Froh, D., Goerke, J., and González, J. (1990) Glucocorticoid Stimulation of Fatty Acid Synthesis in Explants of Human Fetal Lung, Biochim. Biophys. Acta 1042, 1–12.

    Google Scholar 

  48. Xu, Z.X., Stenzel, W., Sasic, S.M., Smart, D.A., and Rooney, S.A. (1993) Glucocorticoid Regulation of Fatty Acid Synthase Gene Expression in Fetal Rat Lung, Am. J. Physiol. 265, 140–147.

    Google Scholar 

  49. Nakamura, M.T., Cho, H.P., and Clarke, S.D. (2000) Regulation of Hepatic Delta-6 Desaturase Expression and the Role in the Polyunsaturated Fatty Acid Inhibition of Fatty acid Synthase Expression in Mice, J. Nutr. 130, 1561–1565.

    PubMed  CAS  Google Scholar 

  50. Flower, R.J., and Blackwell, G.J. (1979) Anti-inflammatory Steroids Induce Biocynthesis of a Phospholipase A2 Inhibitor Which Prevents Prostaglandin Generation, Nature 278, 456–459.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo R. Brenner.

About this article

Cite this article

Brenner, R.R., Ayala, S. & Garda, H.A. Effect of dexamethasone on the fatty acid composition of total liver microsomal lipids and phosphatidylcholine molecular species. Lipids 36, 1337–1345 (2001). https://doi.org/10.1007/s11745-001-0850-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0850-1

Keywords

Navigation