Skip to main content
Log in

Dietary cholesterol induces changes in molecular species of hepatic microsomal phosphatidylcholine

  • Published:
Lipids

Abstract

After 21 days on a diet containing 1g% cholesterol and 0.5g% cholic acid, rats had an increased content of cholesterol in liver microsomal lipids. In liver, both cholesterol content and δ9 desaturase activity increased, whereas δ6 and δ5 desaturase activities decreased. These changes correlated with increases in oleic, palmitoleic, and linoleic acids and decreases in arachidonic and docosahexenoic acids in total microsomal lipids. Similar fatty acid changes were found in phosphatidylcholine (PC), the principal lipid of the microsomal membrane. In PC the predominant molecular fatty acid species (67% of the total) in the control rats were 18:0/20:4, 16:0/20:4, and 16:0/18:2; and they mainly determined the contribution of PC to the biophysical and biochemical properties of the phospholipid bilayer. The cholesterol diet decreased specifically the 18:0/20:4 species, and to a lesser extent, 16:0/20:4 and 18:0/22:6. The 18:1-containing species, especially 18:1/18:2 and less so 16:0/18:1 and 18:1/20:4, were increased. A new 18:1/18:1 species appeared. The independent effects of the presence of cholesterol and change of the fatty acid composition of the phospholipid bilayer of liver microsomes on the packing were studied by fluorescence methods using 6-lauroyl-2,4-dimethylaminonaphthalene, 1,6-diphenyl-1,3,5-hexatriene and 1-(4-trimethylammonium phenyl)-6-phenyl-1,3,5-hexatriene, which test different parameters and depths of the bilayer. Data showed that the increase of cholesterol in the membrane, and not the change of the fatty acid composition of phospholipids, was the main determinant of the increased bulk packing of the bilayer. The increase of fluid oleic- and linoleic-containing species almost compensated for the drop in 20:4- and 22:6-containing molecules. But the most important effect was that the general drop in essential n-6 and n-3 polyunsaturated fatty acids meant that this endogenous source for the needs of the animal decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

1,6-diphenyl-1,3,5-hexatriene

ELSD:

evaporative light-scattering detector

GLC:

gas-liquid chomatography

GP:

generalized polarization

HPLC:

high-performance liquid chromatography

Laurdan:

6-lauroyl-2,4-dimethylaminonaphthalene

PC:

phosphatidylcholine

r s′ :

steady-state fluorescence anisotropy

r co′ :

limiting anisotropy

S :

order parameter

SRE:

sterol-responsive element

SREBP:

SRE-binding protein

τ:

lifetime

δτ:

differential polarized phase lifetime

τ M :

modulation lifetime

τ p , phase τ R :

rotational correlation time

TMA-DPH:

1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene

References

  1. Leikin, A.I., and Brenner, R.R. (1987) Cholesterol-Induced Microsomal Changes Modulate Desaturase Activities, Biochim. Biophys. Acta 922, 294–303.

    PubMed  CAS  Google Scholar 

  2. Leikin, A.I., and Brenner, R.R. (1988) In vivo Cholesterol Removal from Liver Microsomes Induces Changes in Fatty Acid Desaturase Activities, Biochim. Biophys. Acta. 963, 311–319.

    PubMed  CAS  Google Scholar 

  3. Garg, M.L., Snowswell, A.M., and Sabine, J.R. (1986) Influence of Dietary Cholesterol on Desaturases Enzymes of Rat Liver Microsomes, Prog. Lipid Res. 25, 639–644.

    Article  PubMed  CAS  Google Scholar 

  4. Castuma, C.E., Brenner, R.R., De Lucca-Gattás, E., Schreier, S., and Lamy-Freund, T.M. (1991) Cholesterol Modulation of Lipid-Protein Interactions in Liver Microsomal Membrane. A Spin Label Study, Biochemistry. 30, 9492–9497.

    Article  PubMed  CAS  Google Scholar 

  5. Castuma, C.E., and Brenner, R.R. (1986) Effect of Dietary Cholesterol on Microsomal Membrane Composition, Dynamics and Kinetic Properties of UDP-Glucuronyl Transferase, Biochim. Biophys. Acta 855, 231–242.

    Article  PubMed  CAS  Google Scholar 

  6. Castuma, C.E., and Brenner, R.R. (1989) The Influence of Fatty Acid Unsaturation and Physical Properties of Microsomal Membrane Phospholipids on UDP-Glucuronyl Transferase Activity, Biochem. J. 258, 723–731.

    PubMed  CAS  Google Scholar 

  7. Garda, H.A., and Brenner, R.R. (1985) In vitro Modification of Cholesterol Content of Rat Liver Microsomes. Effect upon Membrane “Fluidity” and Activities of Glucose-6-phosphatase and Fatty Acid Desaturation System, Biochim. Biophys. Acta 819, 45–54.

    Article  PubMed  CAS  Google Scholar 

  8. Garda, H.A., and Brenner, R.R. (1984) Short Chain Aliphatic Alcohols Increase Rat Liver Microsomal Membrane “Fluidity” and Affect the Activities of Some Microsomal Membrane Bound Enzymes, Biochim Biophys. Acta 769, 141–153.

    Article  Google Scholar 

  9. Landau, J.M., Sekowski, A., and Hamm, M.W. (1997) Dietary Cholesterol and the Activity of Stearoyl-CoA Desaturase in Rats: Evidence for an Indirect Regulatory Effect, Biochim. Biophys. Acta 1345, 349–357.

    PubMed  CAS  Google Scholar 

  10. Rogers, G.R., and Harper, A.E. (1965) Amino Acid Diets and Maximal Growth in the Rat, J. Nutr. 87, 267–273.

    PubMed  CAS  Google Scholar 

  11. Catalá, A., Nervi, A.M., and Brenner, R.R. (1975) Separation of a Protein Factor Necessary for the Oxidative Desaturation of Fatty Acids in the Rat, J. Biol. Chem. 250, 7481–7484.

    PubMed  Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  13. Folch, J., Lees, M., and Sloane-Stanley, G.R. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  14. Huang, T.C., Chen, C.P., Wefler, V., and Raftery, A. (1961) A Stable Reagent for the Lieberman-Buchard Reaction. Application to Rapid Serum Cholesterol Determination, Anal. Chem. 33, 1405–1406.

    Article  CAS  Google Scholar 

  15. Chen, P.S., Toribara, T., and Warner, H. (1956) Microdetermination of Phosphorus, Anal. Chem. 28, 1756–1758.

    Article  CAS  Google Scholar 

  16. Letter, W.S. (1992) A Rapid Method for Phospholipid Class Separation by HPLC Using an Evaporative Light-Scattering Detector, J. Liq. Chromatogr. 15, 253–266.

    CAS  Google Scholar 

  17. Brouwers, J.F.H.M., Gadella, B.M., Lambert, M.G., van Golde, L.M.G., and Tielens, A.G.M. (1998) Quantitative Analysis of Phosphatidylcholine Molecular Species Using HPLC and Light-Scattering Detection, J. Lipid Res. 39, 344–353.

    PubMed  CAS  Google Scholar 

  18. Lakowicz, J.R., Prendergast, F.G., and Hogen, D. (1979) Differential Polarized Phase Fluorometric Investigations of Diphenylhexatriene in Lipid Bilayers. Quantitation of Hindered Depolarizing Rotations, Biochemistry 18, 508–519.

    Article  PubMed  CAS  Google Scholar 

  19. Lakowicz, J.R. (1983) Principles of Fluorescence Spectroscopy, pp. 51–91, Plenum Press, New York.

    Google Scholar 

  20. Tricerri, M.A., Garda, H.A., and Brenner, R.R. (1994) Lipid Chain Order and Dynamics at Differential Bilayer Depths in Liposomes of Several Phosphatidyl Cholines Using Differential Polarized Phase Fluorescence, Chem. Phys. Lipids. 71, 61–72.

    Article  PubMed  CAS  Google Scholar 

  21. Garda, H.A., Bernasconi, A.M., and Brenner, R.R. (1994) Possible Compensation of Structural and Viscotropic Properties in Hepatic Microsomes and Erythrocyte Membranes of Rats with Essential Fatty Acid Deficiency, J. Lipid Res. 35, 1367–1377.

    PubMed  CAS  Google Scholar 

  22. Rodríguez, S., Garda, H.A., Heinzen, H., and Moyna, P. (1997) Effect of Plant Monofunctional Pentacyclic Triterpenes on the Dynamic and Structural Properties of Dipalmitoyl Phosphatidyl Choline Bilayers, Chem. Phys. Lipids 89, 119–130.

    Article  Google Scholar 

  23. Spencer, R.D., and Weber, G. (1970) Influence of Brownian Rotations and Energy Transfer Upon the Measurements of Fluorescence Lifetime, J. Chem. Phys. 52, 1654–1663.

    Article  CAS  Google Scholar 

  24. Lakowicz, J.R., Cherek, H., and Bevan, D.R. (1980) Demonstration of Nanosecond Dipolar Relaxation in Biopolymers by Inversion of the Apparent Fluorescence Phase Shift and Demodulation Lifetimes, J. Biol. Chem. 255, 4403–4406.

    PubMed  CAS  Google Scholar 

  25. Lakowicz, J.R., and Cherek, H. (1988) Dipolar Relaxation in Proteins on the Nanosecond Timescale Observed by Wave-length Resolved Phase Fluorometry of Tryptophan Fluorescence, J. Biol. Chem. 255, 831–834.

    Google Scholar 

  26. Weber, G. (1978) Limited Rotational Motions: Recognition by Differential Phase Fluorometry, Acta Phys. Pol. A 54, 173–179.

    Google Scholar 

  27. Garda, H.A., Bernasconi, A.M., and Brenner, R.R. (1994) Influence of Membrane Proteins on Lipid Matrix Structure and Dynamics. A Differential Polarized Phase Fluorometry Study in Rat Liver Microsomes and Erythrocyte Membranes, An. Asoc. Quím. Argent. 82, 305–323.

    CAS  Google Scholar 

  28. Garda, H.A., Bernasconi, A.M., Aguilar, F., Soto, M.A., and Sotomayer, C.P. (1997) Effect of Polyunsaturated Fatty Acid Deficiency on Dipole Relaxation in the Membrane Interface of Rat Liver Microsomes, Biochim. Biophys. Acta. 1323, 97–104.

    Article  PubMed  CAS  Google Scholar 

  29. Los, B.A., and Murata, N. (1998) Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta 1394, 3–15.

    PubMed  CAS  Google Scholar 

  30. Ntambi, J.M. (1999) Regulation of Stearoyl-CoA Desaturase by Polyunsaturated Fatty Acids and Cholesterol, J. Lipid Res. 40, 1549–1558.

    PubMed  CAS  Google Scholar 

  31. Tabor, D.E., Kim, J.B., Spiegelman, B.M., and Edwards, P.A. (1998) Transcriptional Activation of the Stearoyl-CoA Desaturase-2 Gene by Sterol Regulatory Element Binding Protein/ Adipocyte Determination and Differentiation Factor, J. Biol. Chem. 273, 22052–22058.

    Article  PubMed  CAS  Google Scholar 

  32. Veno, K., and Okuyama, H. (1986) A High Cholesterol/Cholate Diet Induced Fatty Liver in Spontaneously Hypertensive Rats, Lipids 21, 475–480.

    Google Scholar 

  33. Garda, H.A., Bernasconi, A.M., Tricerri, M.A., and Brenner, R.R. (1997) Molecular Species of Phosphoglycerides in Liver Microsomes of Rats Fed a Fat-Free Diet, Lipids 32, 507–513.

    PubMed  CAS  Google Scholar 

  34. Stubbs, C.D., and Smith, A.D. (1984) The Modifications of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function, Biochim. Biophys. Acta. 779, 89–137.

    PubMed  CAS  Google Scholar 

  35. Mac Donald, J.I.S., and Sprecher, H. (1991) Phospholipid Fatty Acid Remodeling in Mammalian Cells, Biochim. Biophys. Acta 1084, 105–121.

    CAS  Google Scholar 

  36. Schmid, P.C., Spimrova, I., and Schmid, H.H.O. (1997) Generation and Remodeling of Highly Polyunsaturated Molecular Species of Rat Hepatocyte Phospholipids, Lipids 32, 1181–1187.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo R. Brenner.

About this article

Cite this article

Bernasconi, A.M., Garda, H.A. & Brenner, R.R. Dietary cholesterol induces changes in molecular species of hepatic microsomal phosphatidylcholine. Lipids 35, 1335–1344 (2000). https://doi.org/10.1007/s11745-000-0650-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0650-7

Keywords

Navigation