Skip to main content
Log in

Mixed-chain phospholipids: Structures and chain-melting behavior

  • Review
  • Published:
Lipids

Abstract

It has long been established that diacyl phospholipids isolated from animal cell membranes are predominantly of a mixed-chain variety, meaning that the sn-1 and sn-2 acyl chains are saturated and unsaturated acyl chains, respectively. In general, monoenoic and dienoic acids are found in the sn-2 acyl chain of phosphatidylcholine (PtdCho), whereas polyenoic acids are in phosphatidylethanolamine (PtdEth). These unsaturated chains contain only cis-double bonds, which are always methylene-interrupted. In recent years, the structures and the chain-melting behavior of mixed-chain PtdCho and PtdEth have been systematically studied in this laboratory. Specifically, we have examined the effects of chain unsaturation of the sn-2 acyl chain on the phase transition temperature (Tm) of many PtdCho and PtdEth by high-resolution differential scanning calorimetry (DSC). The Tm values, for instance, obtained from all-unsaturated mixed-chain PtdEth derived from a common precursor can be grouped together according to their chemical formula to form a Tm-diagram. Hence, all the Tm values can be compared simply, systematically, and simultaneously using the Tm-diagram. In addition, the energy-minimized structures of mixed-chain phospholipids containing different numbers/positions of methylene-interruped cis-double bonds have been simulated by molecular mechanics calculations (MM). In this review, the results of our MM and DSC studies carried out with various mixed-chain phospholipids are summarized. In addition, we emphasize that the combined approach of MM and DSC yields unique uniformation that can correlate the various Tm-profiles seen in the Tm-diagram with the structural variation of mixed-chain lipids as caused by the introduction of different numbers/positions of methylene-interrupted cis-double bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATS:

all-trans segment

ΔC:

effective chain length differenence, as measured in C−C bonds, between the sn-1 and the sn-2 acyl chains, an indication of chain asymmetry

ΔCref :

effective chain length difference of the reference state [or, effective chain length difference between the sn-1 and sn-2 acyl chains]

CL:

effective chain length of the longer of the two acyl chains

DSC:

differential scanning calorimetry

MM:

molecular mechanics

N:

distance, in C−C bond lengths, between the two carbonyl oxygens of the sn-1 acyl chains in a trans-bilayer dimer of C(X):C(Y) PtdCho

PtdCho:

phosphatidylcholine

PtdEth:

phosphatidylethanolamine

PtdGro:

phosphatidylglycerol

Ptd2Gro:

Cardiolipin (=diphosphatidylglycerol)

PtdIns:

phosphatidylinositol

PtdSer:

phosphatidylserine

Tm :

main phase transition temperature

References

  1. Huang, C. (1998) Membrane Lipid Structure and Organization, in The Cell Physiology Source Book, 2nd edn. (Sperelakis, N., ed.), pp. 39–60, Academic Press, New York.

    Google Scholar 

  2. Kennedy, E.P. (1986) The Biosynthesis of Phospholipids, in Lipids and Membranes: Past, Present and Future (Op den Kamp, J.A.F., Roelofsen, B., and Wirtz, K.W.A., eds.), pp. 171–206, Elsevier, Amsterdam.

    Google Scholar 

  3. Kunau, W.-H. (1976) Chemistry and Biochemistry of Unsaturated Fatty Acids, Angew. Chem. Int. Ed. Engl. 15, 61–74.

    Article  PubMed  CAS  Google Scholar 

  4. Chapman, D. (1993) Lipid Phase Transitions, in Biomembranes: Physical Aspects (Shinitzky, M., ed.), pp. 29–62, Balabon Publishers, Weinhein, Germany.

    Google Scholar 

  5. Thompson, T.E., Sankaram, M.B., and Huang, C. (1997) Organization and Dynamics of the Lipid Components of Biological Membranes, in Handbook of Physiology, Section 14; Cell Physiology (Hoffman, J.F., and Jamieson, J.D., eds.), Oxford University Press, pp. 23–56, Oxford.

  6. Barton, P.G., and Gunstone, F.D. (1975) Hydrocarbon Chain Packing and Molecule Motion in Phospholipid Bilayers Formed from Unsaturated Lecithins. Synthesis and Properties of Sixteen Positions of 1,2-Dioctadecanoyl-sn-glycerol-3-phosphorylcholine, J. Biol. Chem. 250, 4470–4476.

    PubMed  CAS  Google Scholar 

  7. Hernandez-Borrell, J., and Keough, K.M.W. (1993) Heteroacid Phosphatidylcholines with Different Amounts of Unsaturation Respond Differently to Cholesterol, Biochim. Biophys. Acta 1153, 277–282.

    Article  PubMed  CAS  Google Scholar 

  8. Keough, K.M. (1990) Influence of Chain Unsaturation and Chain Position on Thermotropism and Intermolecular Interactions in Membranes, Biochem. Soc. Trans. 18, 835–837.

    PubMed  CAS  Google Scholar 

  9. Koenig, B.W., Strey, H.H., and Gawrisch, K. (1997) Membrane Lateral Compressibility Determined by NMR and X-ray Diffraction: Effect of Acyl Chain Polyunsaturation, Biophys. J. 73, 1954–1966.

    PubMed  CAS  Google Scholar 

  10. Litman, B.J., Lewis, E.N., and Levin, I.W. (1991) Packing Characteristics of Very Highly Unsaturated Bilayer Lipids: Raman Spectroscopic Studies of Multilamellar Phosphatidylcholine Dispersion, Biochemistry 30, 313–319.

    Article  PubMed  CAS  Google Scholar 

  11. Niebylski, C.D., and Salem, N., Jr. (1994) Calorimetric Investigation of a Series of Mixed-Chain Polyunsaturated Phosphatidylcholines: Effect of sn-2 Chain Length and Degree of Unsaturation, Biophys. J. 67, 2387–2393.

    PubMed  CAS  Google Scholar 

  12. Sanchez-Migallon, M.P., Aranda, F.J., and Gomez-Fernandez, J.C. (1996) Interaction Between Alpha-Tocopherol and Heteroacid Phosphatidylcholines with Different Amounts of Unsaturation, Biochim. Biophys. Acta 1279, 251–258.

    Article  PubMed  Google Scholar 

  13. Huang, C., and Li, S. (1999) Calorimetric and Molecualr Mechanics Studies of the Thermotropic Phase Behavior of Membrane Phospholipids, Biochim. Biophys. Acta 1422, 273–307.

    PubMed  CAS  Google Scholar 

  14. Li, S., Lin, H., Wang, G., and Huang, C. (2001) Molecular Mechanics and Calorimetric Studies of Phosphatidylethanols, Arch. Biochem. Biophys. 385, 88–98.

    Article  PubMed  CAS  Google Scholar 

  15. Allinger, N.L., Yuh, Y.H., and Lii, J.-H. (1989) Molecular Mechanics. The MM3 Force Field for Hydrocarbons, J. Am. Chem. Soc. 111, 8551–8582.

    Article  CAS  Google Scholar 

  16. Pearson, R.H., and Pascher, I. (1979) The Molecular Structure of Lecithin Dihydrate, Nature 281, 499–501.

    Article  PubMed  CAS  Google Scholar 

  17. Zaccai, G., Buldt, G., Seelig, A., and Seelig, J. (1979) Neutron Diffraction Studies on Phosphatidylcholine Model Membrane. II. Chain Conformation and Segmental Disorder, J. Mol. Biol. 134, 693–706.

    Article  PubMed  CAS  Google Scholar 

  18. Li, S., Lin, H., Wang, Z., and Huang, C. (1994) Identification and Characterization of Kink Motifs in 1-Palmitoyl-2-oleoyl-phosphatidylcholine: A Molecular Mechanics Study, Biophys. J. 66, 2005–2018.

    PubMed  CAS  Google Scholar 

  19. Bultmann, T., Lin, H.N., Wang, Z.Q., and Huang, C.H. (1991) Thermotropic and Mixing Behavior of Mixed-Chain Phosphatidylcholines with Molecular Weights Identical with l-α-Dipalmitoylphosphatidylcholine, Biochemistry 30, 7194–7202.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, Z.Q., Lin, H.N., and Huang, C.H. (1990) Differential Scanning Calorimetric Study of a Homologous Series of Fully Hydrated Saturated Mixed-Chain C(X):C(X+6) Phosphatidylcholines, Biochemistry 29, 7072–7076.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, G., Lin, H.N., Li, S. and Huang, C.H. (1995) Phosphatidylcholines with sn-1 Saturated and sn-2 cis-Monounsaturated Acyl Chains: Their Melting Behavior and Structures, J. Biol. Chem. 270, 22738–22746.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, Z.Q., Lin, H.N., Li, S., and Huang, C.H. (1994) Calorimetric Studies and Molecular Mechanics Simulations of Monounsaturated Phosphatidylethanolamine Bilayers, J. Biol. Chem. 269, 23491–23499.

    PubMed  CAS  Google Scholar 

  23. McIntosh, T.J., Lin, H., Li, S., and Huang, C. (2001) The Effect of Ethanol on the Phase Transition Temperature and the Phase Structure of Monounsaturated Phosphatidylcholines, Biochim. Biophys. Acta 1510, 219–230.

    Article  PubMed  CAS  Google Scholar 

  24. Huang, C., Wang, G., Lin, H.N., and Li, S. (1998) A Unifying Tm-Diagram for Phosphatidylethanolamines with sn-1 C20-Saturated and sn-2 C18-Unsaturated Acyl Chains, Biochim. Biophys. Acta 1373, 282–288.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, G., Li, S., Lin, H.N., Brumbaugh, E.E., and Huang, C. (1999) Effects of Various Numbers and Positions of cis Double Bonds in the sn-2 Acyl Chain of Phosphatidylethanolamine on the Chain-Melting Temperature, J. Biol. Chem. 274, 12289–12299.

    Article  PubMed  CAS  Google Scholar 

  26. Hitchcock, P.B., Mason, R., Thomas, K.M., and Shipley, G.G. (1974) Structural Chemistry of 1,2-Dilauroyl-DL-phosphatidylethanolamine: Molecular Conformation and Intermolecular Packing Phospholipids, Proc. Nat. Acad. Sci. USA 71, 3036–3040.

    Article  PubMed  CAS  Google Scholar 

  27. Ernst, J., Sheldrick, W.S., and Fuhrhop, J.-H. (1979) Die Struckturen der Essentiellen Ungesättigten Fettsäuren, Kristallstrucktur der Linolsäure Sowie Hinweise auf die Kristallstructuren der α-Linolensäure und der Arachidonsäure, Z. Naturforsch. 346, 706–711.

    Google Scholar 

  28. Wang, G., Li, S., Lin, H., and Huang, C. (1997) Influence of cis Double Bonds in the sn-2 Acyl Chain of Phosphatidylethanolamine on the Gel-to-Liquid Crystalline Phase Transition, Biophys. J. 73, 283–292.

    Article  PubMed  CAS  Google Scholar 

  29. Huang, C., Lin, H.N., Li, S., and Wang, G. (1997) Influence of the Positions of cis Double Bonds in the sn-2 Acyl Chain of Phosphatidylethanolamine on the Bilayer's Melting Behavior, J. Biol. Chem. 272, 21917–21926.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Huang, Ch. Mixed-chain phospholipids: Structures and chain-melting behavior. Lipids 36, 1077–1097 (2001). https://doi.org/10.1007/s11745-001-0818-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0818-1

Keywords

Navigation