Skip to main content
Log in

Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, D.G.A.L., Lekkerkerker, H.N.W., Guo, H., Wegdam, G.H., and Bonn, D. (2005). Hydrodynamics of droplet coalescence. Phys Rev Lett 95, 164503.

    Article  Google Scholar 

  • Aasland, R., and Stewart, A.F. (1995). The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucl Acids Res 23, 3168–3173.

    Article  CAS  Google Scholar 

  • Acuna, C., Liu, X., and Südhof, T.C. (2016). How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron 91, 792–807.

    Article  CAS  Google Scholar 

  • Aguzzi, A., and Altmeyer, M. (2016). Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26, 547–558.

    Article  CAS  Google Scholar 

  • Aguzzi, A., and O’Connor, T. (2010). Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9, 237–248.

    Article  CAS  Google Scholar 

  • Akhmanova, A., and Steinmetz, M.O. (2015). Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16, 711–726.

    Article  CAS  Google Scholar 

  • Akhmanova, A., and Steinmetz, M.O. (2019). Microtubule minus-end regulation at a glance. J Cell Sci 132, jcs227850.

    Article  CAS  Google Scholar 

  • Alberti, S., and Hyman, A.A. (2016). Are aberrant phase transitions a driver of cellular aging? BioEssays 38, 959–968.

    Article  CAS  Google Scholar 

  • Almeida, M.V., Andrade-Navarro, M.A., and Ketting, R.F. (2019). Function and evolution of nematode RNAi pathways. ncRNA 5, 8.

    Article  CAS  Google Scholar 

  • Alshareedah, I., Kaur, T., Ngo, J., Seppala, H., Kounatse, L.A.D., Wang, W., Moosa, M.M., and Banerjee, P.R. (2019). Interplay between short-range attraction and long-range repulsion controls reentrant liquid condensation of ribonucleoprotein-RNA complexes. J Am Chem Soc 141, 14593–14602.

    Article  CAS  Google Scholar 

  • Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E., and Zweckstetter, M. (2017). Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 8, 275.

    Article  Google Scholar 

  • Araki, Y., Zeng, M., Zhang, M., and Huganir, R.L. (2015). Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173–189.

    Article  CAS  Google Scholar 

  • Atwood, S.X., and Prehoda, K.E. (2009). aPKC phosphorylates Miranda to polarize fate determinants during neuroblast asymmetric cell division. Curr Biol 19, 723–729.

    Article  CAS  Google Scholar 

  • Audas, T.E., Audas, D.E., Jacob, M.D., Ho, J.J.D., Khacho, M., Wang, M., Perera, J.K., Gardiner, C., Bennett, C.A., Head, T., et al. (2016). Adaptation to stressors by systemic protein amyloidogenesis. Dev Cell 39, 155–168.

    Article  CAS  Google Scholar 

  • Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285–298.

    Article  CAS  Google Scholar 

  • Banani, S.F., Rice, A.M., Peeples, W.B., Lin, Y., Jain, S., Parker, R., and Rosen, M.K. (2016). Compositional control of phase-separated cellular bodies. Cell 166, 651–663.

    Article  CAS  Google Scholar 

  • Banjade, S., and Rosen, M.K. (2014). Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123.

    Article  Google Scholar 

  • Benndorf, R., Martin, J.L., Kosakovsky Pond, S.L., and Wertheim, J.O. (2014). Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. Mutat Res/Rev Mutat Res 761, 15–30.

    Article  CAS  Google Scholar 

  • Berryer, M.H., Hamdan, F.F., Klitten, L.L., Møller, R.S., Carmant, L., Schwartzentruber, J., Patry, L., Dobrzeniecka, S., Rochefort, D., Neugnot-Cerioli, M., et al. (2013). Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat 34, 385–394.

    Article  CAS  Google Scholar 

  • Betschinger, J., Mechtler, K., and Knoblich, J.A. (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253.

    Article  CAS  Google Scholar 

  • Biederer, T., Kaeser, P.S., and Blanpied, T.A. (2017). Transcellular nanoalignment of synaptic function. Neuron 96, 680–696.

    Article  CAS  Google Scholar 

  • Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603–614.

    Article  Google Scholar 

  • Bodakuntla, S., Jijumon, A.S., Villablanca, C., Gonzalez-Billault, C., and Janke, C. (2019). Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol 29, 804–819.

    Article  CAS  Google Scholar 

  • Boehning, M., Dugast-Darzacq, C., Rankovic, M., Hansen, A.S., Yu, T., Marie-Nelly, H., McSwiggen, D.T., Kokic, G., Dailey, G.M., Cramer, P., et al. (2018). RNA polymerase II clustering through carboxyterminal domain phase separation. Nat Struct Mol Biol 25, 833–840.

    Article  CAS  Google Scholar 

  • Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., et al. (2018). Protein phase separation: a new phase in cell biology. Trends Cell Biol 28, 420–435.

    Article  CAS  Google Scholar 

  • Boeynaems, S., Bogaert, E., Kovacs, D., Konijnenberg, A., Timmerman, E., Volkov, A., Guharoy, M., De Decker, M., Jaspers, T., Ryan, V.H., et al. (2017). Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell 65, 1044–1055.e5.

    Article  CAS  Google Scholar 

  • Boija, A., Klein, I.A., Sabari, B.R., Dall’Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N. M., et al. (2018). Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16.

    Article  CAS  Google Scholar 

  • Boke, E., Ruer, M., Wühr, M., Coughlin, M., Lemaitre, R., Gygi, S.P., Alberti, S., Drechsel, D., Hyman, A.A., and Mitchison, T.J. (2016). Amyloid-like self-assembly of a cellular compartment. Cell 166, 637–650.

    Article  CAS  Google Scholar 

  • Bouchard, J.J., Otero, J.H., Scott, D.C., Szulc, E., Martin, E.W., Sabri, N., Granata, D., Marzahn, M.R., Lindorff-Larsen, K., Salvatella, X., et al. (2018). Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell 72, 19–36.e8.

    Article  CAS  Google Scholar 

  • Brandt, R., and Lee, G. (1993). The balance between tau protein’s microtubule growth and nucleation activities: implications for the formation of axonal microtubules. J Neurochem 61, 997–1005.

    Article  CAS  Google Scholar 

  • Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732.

    Article  CAS  Google Scholar 

  • Brangwynne, C.P., Tompa, P., and Pappu, R.V. (2015). Polymer physics of intracellular phase transitions. Nat Phys 11, 899–904.

    Article  CAS  Google Scholar 

  • Brasher, S.V., Smith, B.O., Fogh, R.H., Nietlispach, D., Thiru, A., Nielsen, P.R., Broadhurst, R.W., Ball, L.J., Murzina, N.V., and Laue, E.D. (2000). The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19, 1587–1597.

    Article  CAS  Google Scholar 

  • Buchan, J.R. (2014). mRNP granules. RNA Biol 11, 1019–1030.

    Article  Google Scholar 

  • Buchan, J.R., Kolaitis, R.M., Taylor, J.P., and Parker, R. (2013). Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474.

    Article  CAS  Google Scholar 

  • Buracco, S., Claydon, S., and Insall, R. (2019). Control of actin dynamics during cell motility. F1000Res 8, pii: F1000 Faculty Rev-1977.

    Article  Google Scholar 

  • Cabrales Fontela, Y., Kadavath, H., Biernat, J., Riedel, D., Mandelkow, E., and Zweckstetter, M. (2017). Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat Commun 8, 1981.

    Article  Google Scholar 

  • Cai, D., Feliciano, D., Dong, P., Flores, E., Gruebele, M., Porat-Shliom, N., Sukenik, S., Liu, Z., and Lippincott-Schwartz, J. (2019). Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol 21, 1578–1589.

    Article  CAS  Google Scholar 

  • Campellone, K.G., and Welch, M.D. (2010). A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11, 237–251.

    Article  CAS  Google Scholar 

  • Canzio, D., Larson, A., and Narlikar, G.J. (2014). Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 24, 377–386.

    Article  CAS  Google Scholar 

  • Case, L.B., Ditlev, J.A., and Rosen, M.K. (2019a). Regulation of transmembrane signaling by phase separation. Annu Rev Biophys 48, 465–494.

    Article  CAS  Google Scholar 

  • Case, L.B., Zhang, X., Ditlev, J.A., and Rosen, M.K. (2019b). Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097.

    Article  CAS  Google Scholar 

  • Chen, H.J., Rojas-Soto, M., Oguni, A., and Kennedy, M.B. (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904.

    Article  CAS  Google Scholar 

  • Chen, W., Zarnitsyna, V.I., Sarangapani, K.K., Huang, J., and Zhu, C. (2008). Measuring receptor-ligand binding kinetics on cell surfaces: from adhesion frequency to thermal fluctuation methods. Cel Mol Bioeng 1, 276–288.

    Article  CAS  Google Scholar 

  • Chitiprolu, M., Jagow, C., Tremblay, V., Bondy-Chorney, E., Paris, G., Savard, A., Palidwor, G., Barry, F.A., Zinman, L., Keith, J., et al. (2018). A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat Commun 9, 2794.

    Article  Google Scholar 

  • Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, I.I. (2018). Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415.

    Article  CAS  Google Scholar 

  • Chou, C.C., Zhang, Y., Umoh, M.E., Vaughan, S.W., Lorenzini, I., Liu, F., Sayegh, M., Donlin-Asp, P.G., Chen, Y.H., Duong, D.M., et al. (2018). TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21, 228–239.

    Article  CAS  Google Scholar 

  • Clement, J.P., Aceti, M., Creson, T.K., Ozkan, E.D., Shi, Y., Reish, N.J., Almonte, A.G., Miller, B.H., Wiltgen, B.J., Miller, C.A., et al. (2012). Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709–723.

    Article  CAS  Google Scholar 

  • Cohen, D.E., and Lee, J.T. (2002). X-chromosome inactivation and the search for chromosome-wide silencers. Curr Opin Genet Dev 12, 219–224.

    Article  CAS  Google Scholar 

  • Conicella, A.E., Zerze, G.H., Mittal, J., and Fawzi, N.L. (2016). ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549.

    Article  CAS  Google Scholar 

  • Core, L.J., Martins, A.L., Danko, C.G., Waters, C.T., Siepel, A., and Lis, J. T. (2014). Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 46, 1311–1320.

    Article  CAS  Google Scholar 

  • Courtney, A.H., Lo, W.L., and Weiss, A. (2018). TCR signaling: mechanisms of initiation and propagation. Trends Biochem Sci 43, 108–123.

    Article  CAS  Google Scholar 

  • Couteaux, R., and Pecot-Dechavassine, M. (1970). Synaptic vesicles and pouches at the level of “active zones” of the neuromuscular junction (in French). C R Acad Sci Hebd Seances Acad Sci D 271, 2346–2349.

    CAS  Google Scholar 

  • Cowieson, N.P., Partridge, J.F., Allshire, R.C., and McLaughlin, P.J. (2000). Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol 10, 517–525.

    Article  CAS  Google Scholar 

  • Cramer, P. (2019). Organization and regulation of gene transcription. Nature 573, 45–54.

    Article  CAS  Google Scholar 

  • Danieli, A., and Martens, S. (2018). p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. J Cell Sci 131, jcs214304.

    Article  Google Scholar 

  • De Santis, R., Alfano, V., de Turris, V., Colantoni, A., Santini, L., Garone, M.G., Antonacci, G., Peruzzi, G., Sudria-Lopez, E., Wyler, E., et al. (2019). Mutant FUS and ELAVL4 (HuD) aberrant crosstalk in amyotrophic lateral sclerosis. Cell Rep 27, 3818–3831.e5.

    Article  CAS  Google Scholar 

  • DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.C.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.

    Article  CAS  Google Scholar 

  • Dierick, I., Irobi, J., Janssens, S., Theuns, J., Lemmens, R., Jacobs, A., Corsmit, E., Hersmus, N., Van Den Bosch, L., Robberecht, W., et al. (2007). Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Hum Mutat 28, 830.

    Article  Google Scholar 

  • Dixit, R., Ross, J.L., Goldman, Y.E., and Holzbaur, E.L.F. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089.

    Article  CAS  Google Scholar 

  • Dobson, C.M. (2004). Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15, 3–16.

    Article  CAS  Google Scholar 

  • Dogterom, M., and Koenderink, G.H. (2019). Actin-microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol 20, 38–54.

    Article  CAS  Google Scholar 

  • Dormann, D., Rodde, R., Edbauer, D., Bentmann, E., Fischer, I., Hruscha, A., Than, M.E., Mackenzie, I.R.A., Capell, A., Schmid, B., et al. (2010). ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29, 2841–2857.

    Article  CAS  Google Scholar 

  • Duan, Y., Du, A., Gu, J., Duan, G., Wang, C., Gui, X., Ma, Z., Qian, B., Deng, X., Zhang, K., et al. (2019). PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res 29, 233–247.

    Article  CAS  Google Scholar 

  • Dustin, M.L., and Choudhuri, K. (2016). Signaling and polarized communication across the T cell immunological synapse. Annu Rev Cell Dev Biol 32, 303–325.

    Article  CAS  Google Scholar 

  • Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., Mandelkow, E.M., and Mandelkow, E. (1998). Overexpression of Tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143, 777–794.

    Article  CAS  Google Scholar 

  • Eggermann, E., Bucurenciu, I., Goswami, S.P., and Jonas, P. (2011). Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13, 7–21.

    Article  Google Scholar 

  • Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chih-Hsiung Chen, C., Eckmann, C.R., Myong, S., and Brangwynne, C.P. (2015). The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA 112, 7189–7194.

    Article  CAS  Google Scholar 

  • Erben, V., Waldhuber, M., Langer, D., Fetka, I., Jansen, R.P., and Petritsch, C. (2008). Asymmetric localization of the adaptor protein Miranda in neuroblasts is achieved by diffusion and sequential interaction of Myosin II and VI. J Cell Sci 121, 1403–1414.

    Article  CAS  Google Scholar 

  • Erdel, F., and Rippe, K. (2018). Formation of chromatin subcompartments by phase separation. Biophys J 114, 2262–2270.

    Article  CAS  Google Scholar 

  • Eskeland, R., Eberharter, A., and Imhof, A. (2007). HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol 27, 453–465.

    Article  CAS  Google Scholar 

  • Farhan, S.M.K., Howrigan, D.P., Abbott, L.E., Klim, J.R., Topp, S.D., Byrnes, A.E., Churchhouse, C., Phatnani, H., Smith, B.N., Rampersaud, E., et al. (2019). Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nat Neurosci 22, 1966–1974.

    Article  CAS  Google Scholar 

  • Feng, W., and Zhang, M. (2009). Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10, 87–99.

    Article  CAS  Google Scholar 

  • Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Res 24, 24–41.

    Article  CAS  Google Scholar 

  • Feng, Z., Chen, X., Wu, X., and Zhang, M. (2019). Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J Biol Chem 294, 14823–14835.

    Article  CAS  Google Scholar 

  • Feric, M., Vaidya, N., Harmon, T.S., Mitrea, D.M., Zhu, L., Richardson, T. M., Kriwacki, R.W., Pappu, R.V., and Brangwynne, C.P. (2016). Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697.

    Article  CAS  Google Scholar 

  • Feric, M., and Brangwynne, C.P. (2013). A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat Cell Biol 15, 1253–1259.

    Article  CAS  Google Scholar 

  • Feric, M., Broedersz, C.P., and Brangwynne, C.P. (2015). Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep. Sci Rep 5, 16607.

    Article  CAS  Google Scholar 

  • Fischer, D., Mukrasch, M.D., Biernat, J., Bibow, S., Blackledge, M., Griesinger, C., Mandelkow, E., and Zweckstetter, M. (2009). Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry 48, 10047–10055.

    Article  CAS  Google Scholar 

  • Flory, P. (1953). Principles of Polymer Chemistry (Ithaca, New York: Cornell University Press).

    Google Scholar 

  • Frottin, F., Schueder, F., Tiwary, S., Gupta, R., Körner, R., Schlichthaerle, T., Cox, J., Jungmann, R., Hartl, F.U., and Hipp, M.S. (2019). The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347.

    Article  CAS  Google Scholar 

  • Ganassi, M., Mateju, D., Bigi, I., Mediani, L., Poser, I., Lee, H.O., Seguin, S.J., Morelli, F.F., Vinet, J., Leo, G., et al. (2016). A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol Cell 63, 796–810.

    Article  CAS  Google Scholar 

  • Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., Fu, W., Zhang, J., Wu, W., Zhang, X., et al. (2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 12, 781–790.

    Article  CAS  Google Scholar 

  • Garcia, M.L., and Cleveland, D.W. (2001). Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 13, 41–48.

    Article  CAS  Google Scholar 

  • Gibson, B.A., Doolittle, L.K., Schneider, M.W.G., Jensen, L.E., Gamarra, N., Henry, L., Gerlich, D.W., Redding, S., and Rosen, M.K. (2019). Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21.

    Article  CAS  Google Scholar 

  • Gönczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9, 355–366.

    Article  Google Scholar 

  • Gressel, S., Schwalb, B., and Cramer, P. (2019). The pause-initiation limit restricts transcription activation in human cells. Nat Commun 10, 3603.

    Article  Google Scholar 

  • Grewal, S.I.S., and Moazed, D. (2003). Heterochromatin and epigenetic control of gene expression. Science 301, 798–802.

    Article  CAS  Google Scholar 

  • Gui, X., Luo, F., Li, Y., Zhou, H., Qin, Z., Liu, Z., Gu, J., Xie, M., Zhao, K., Dai, B., et al. (2019). Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun 10, 2006.

    Article  Google Scholar 

  • Guo, L., Kim, H.J., Wang, H., Monaghan, J., Freyermuth, F., Sung, J.C., O’Donovan, K., Fare, C.M., Diaz, Z., Singh, N., et al. (2018). Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e20.

    Article  CAS  Google Scholar 

  • Haberle, V., and Stark, A. (2018). Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19, 621–637.

    Article  CAS  Google Scholar 

  • Hamdan, F.F., Gauthier, J., Spiegelman, D., Noreau, A., Yang, Y., Pellerin, S., Dobrzeniecka, S., Côté, M., Perreau-Linck, E., Perreault-Linck, E., et al. (2009). Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med 360, 599–605.

    Article  CAS  Google Scholar 

  • Han, T.W., Kato, M., Xie, S., Wu, L.C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G., et al. (2012). Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779.

    Article  CAS  Google Scholar 

  • Hancock, R., and Jeon, K.W. (2014). Preface. New models of the cell nucleus: crowding, entropic forces, phase separation, and fractals. Int Rev Cell Mol Biol 301, xiii, doi: https://doi.org/10.1016/B978-0-12-800046-5.10000-1.

    Article  Google Scholar 

  • Hannaford, M.R., Ramat, A., Loyer, N., and Januschke, J. (2018). aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda in Drosophila neuroblasts. eLife 1, e29939.

    Article  Google Scholar 

  • Harrison, A.F., and Shorter, J. (2017). RNA-binding proteins with prion-like domains in health and disease. Biochem J 474, 1417–1438.

    Article  CAS  Google Scholar 

  • Helmke, K.J., Heald, R., and Wilbur, J.D. (2013). Interplay between spindle architecture and function. Int Rev Cell Mol Biol 306, 83–125.

    Article  CAS  Google Scholar 

  • Herhaus, L., and Dikic, I. (2018). Ubiquitin-induced phase separation of p62/SQSTM1. Cell Res 28, 389–390.

    Article  CAS  Google Scholar 

  • Hernández-Vega, A., Braun, M., Scharrel, L., Jahnel, M., Wegmann, S., Hyman, B.T., Alberti, S., Diez, S., and Hyman, A.A. (2017). Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep 20, 2304–2312.

    Article  Google Scholar 

  • Hnisz, D., Shrinivas, K., Young, R.A., Chakraborty, A.K., and Sharp, P.A. (2017). A phase separation model for transcriptional control. Cell 169, 13–23.

    Article  CAS  Google Scholar 

  • Hofweber, M., and Dormann, D. (2019). Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 294, 7137–7150.

    Article  CAS  Google Scholar 

  • Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., Ruepp, M.D., Simons, M., Niessing, D., Madl, T., et al. (2018). Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13.

    Article  CAS  Google Scholar 

  • Hohmann, T., and Dehghani, F. (2019). The cytoskeleton—a complex interacting meshwork. Cells 8, 362.

    Article  CAS  Google Scholar 

  • Hondele, M., Sachdev, R., Heinrich, S., Wang, J., Vallotton, P., Fontoura, B. M.A., and Weis, K. (2019). DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148.

    Article  CAS  Google Scholar 

  • Huang, Y., Li, T., Ems-McClung, S.C., Walczak, C.E., Prigent, C., Zhu, X., Zhang, X., and Zheng, Y. (2018). Aurora A activation in mitosis promoted by BuGZ. J Cell Biol 217, 107–116.

    Article  CAS  Google Scholar 

  • Huo, X., Ji, L., Zhang, Y., Lv, P., Cao, X., Wang, Q., Yan, Z., Dong, S., Du, D., Zhang, F., et al. (2020). The nuclear matrix protein SAFB cooperates with major satellite RNAs to stabilize heterochromatin architecture partially through phase separation. Mol Cell 77, 368–383.e7.

    Article  CAS  Google Scholar 

  • Ikeshima-Kataoka, H., Skeath, J.B., Nabeshima, Y.I., Doe, C.Q., and Matsuzaki, F. (1991). Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629.

    Article  Google Scholar 

  • Iqbal, K., Liu, F., and Gong, C.X. (2016). Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12, 15–27.

    Article  CAS  Google Scholar 

  • Isono, K., Endo, T.A., Ku, M., Yamada, D., Suzuki, R., Sharif, J., Ishikura, T., Toyoda, T., Bernstein, B.E., and Koseki, H. (2013). SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26, 565–577.

    Article  CAS  Google Scholar 

  • Israelachvili, J.N. (2011). Intermolecular and Surface Forces, 3rd ed. (Waltham, MA: Academic Press).

    Google Scholar 

  • Izumi, Y., Ohta, N., Hisata, K., Raabe, T., and Matsuzaki, F. (2006). Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8, 586–593.

    Article  CAS  Google Scholar 

  • Jacobs, S.A., and Khorasanizadeh, S. (2002). Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083.

    Article  CAS  Google Scholar 

  • Jain, A., and Vale, R.D. (2017). RNA phase transitions in repeat expansion disorders. Nature 546, 243–247.

    Article  CAS  Google Scholar 

  • Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A., and Parker, R. (2016). ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498.

    Article  CAS  Google Scholar 

  • James, T.C., and Elgin, S.C. (1986). Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6, 3862–3872.

    CAS  Google Scholar 

  • Janssen, A., Colmenares, S.U., and Karpen, G.H. (2018). Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol 34, 265–288.

    Article  CAS  Google Scholar 

  • Jawerth, L.M., Ijavi, M., Ruer, M., Saha, S., Jahnel, M., Hyman, A.A., Jülicher, F., and Fischer-Friedrich, E. (2018). Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys Rev Lett 121, 258101.

    Article  CAS  Google Scholar 

  • Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080.

    Article  CAS  Google Scholar 

  • Jeronimo, C., and Robert, F. (2017). The mediator complex: at the nexus of RNA polymerase II transcription. Trends Cell Biol 27, 765–783.

    Article  CAS  Google Scholar 

  • Jia, M., Shan, Z., Yang, Y., Liu, C., Li, J., Luo, Z.G., Zhang, M., Cai, Y., Wen, W., and Wang, W. (2015). The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division. Nat Commun 6, 8381.

    Article  CAS  Google Scholar 

  • Jiang, H., He, X., Wang, S., Jia, J., Wan, Y., Wang, Y., Zeng, R., Yates Iii, J., Zhu, X., and Zheng, Y. (2014). A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Dev Cell 28, 268–281.

    Article  CAS  Google Scholar 

  • Jiang, H., Wang, S., Huang, Y., He, X., Cui, H., Zhu, X., and Zheng, Y. (2015). Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122.

    Article  CAS  Google Scholar 

  • Jones, N., Blasutig, I.M., Eremina, V., Ruston, J.M., Bladt, F., Li, H., Huang, H., Larose, L., Li, S.S.C., Takano, T., et al. (2006). Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440, 818–823.

    Article  CAS  Google Scholar 

  • Kadavath, H., Hofele, R.V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., Mandelkow, E., and Zweckstetter, M. (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA 112, 7501–7506.

    Article  CAS  Google Scholar 

  • Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., Mirzaei, H., Goldsmith, E.J., Longgood, J., Pei, J., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767.

    Article  CAS  Google Scholar 

  • Kaur, T., Alshareedah, I., Wang, W., Ngo, J., Moosa, M.M., and Banerjee, P.R. (2019). Molecular crowding tunes material states of ribonucleoprotein condensates. Biomolecules 9, 71.

    Article  CAS  Google Scholar 

  • Kellogg, E.H., Hejab, N.M.A., Poepsel, S., Downing, K.H., DiMaio, F., and Nogales, E. (2018). Near-atomic model of microtubule-tau interactions. Science 360, 1242–1246.

    Article  CAS  Google Scholar 

  • Kim, H.J., Kim, N.C., Wang, Y.D., Scarborough, E.A., Moore, J., Diaz, Z., MacLea, K.S., Freibaum, B., Li, S., Molliex, A., et al. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473.

    Article  CAS  Google Scholar 

  • Kim, J., and Kingston, R.E. (2020). The CBX family of proteins in transcriptional repression and memory. J Biosci 45, 16.

    Article  CAS  Google Scholar 

  • Kim, J.H., Liao, D., Lau, L.F., and Huganir, R.L. (1998). SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691.

    Article  CAS  Google Scholar 

  • Kim, T.K., Ebright, R.H., and Reinberg, D. (2000). Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1421.

    Article  CAS  Google Scholar 

  • Klosin, A., and Hyman, A.A. (2017). A liquid reservoir for silent chromatin. Nature 547, 168–169.

    Article  CAS  Google Scholar 

  • Knoblich, J.A. (2008). Mechanisms of asymmetric stem cell division. Cell 132, 583–597.

    Article  CAS  Google Scholar 

  • Knoblich, J.A. (2010). Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11, 849–860.

    Article  CAS  Google Scholar 

  • Knoblich, J.A., Jan, J.A., and Nung Jan, Y. (1995). Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–627.

    Article  CAS  Google Scholar 

  • Komatsu, M., Waguri, S., Koike, M., Sou, Y.S., Ueno, T., Hara, T., Mizushima, N., Iwata, J.I., Ezaki, J., Murata, S., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163.

    Article  CAS  Google Scholar 

  • Kono, K., Yoshiura, S., Fujita, I., Okada, Y., Shitamukai, A., Shibata, T., and Matsuzaki, F. (2019). Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. eLife 8, e45559.

    Article  Google Scholar 

  • Kornberg, R.D. (2005). Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30, 235–239.

    Article  CAS  Google Scholar 

  • Kroschwald, S., Maharana, S., Mateju, D., Malinovska, L., Nüske, E., Poser, I., Richter, D., and Alberti, S. (2015). Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4, e06807.

    Article  Google Scholar 

  • Kundu, S., Ji, F., Sunwoo, H., Jain, G., Lee, J.T., Sadreyev, R.I., Dekker, J., and Kingston, R.E. (2017). Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol Cell 65, 432–446.e5.

    Article  CAS  Google Scholar 

  • Kwon, I., Kato, M., Xiang, S., Wu, L., Theodoropoulos, P., Mirzaei, H., Han, T., Xie, S., Corden, J.L., and McKnight, S.L. (2013). Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060.

    Article  CAS  Google Scholar 

  • Larson, A.G., and Narlikar, G.J. (2018). The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57, 2540–2548.

    Article  CAS  Google Scholar 

  • Larson, A.G., Elnatan, D., Keenen, M.M., Trnka, M.J., Johnston, J.B., Burlingame, A.L., Agard, D.A., Redding, S., and Narlikar, G.J. (2017). Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240.

    Article  CAS  Google Scholar 

  • Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., et al. (2016). C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e17.

    Article  CAS  Google Scholar 

  • Levenson, R., Bracken, C., Sharma, C., Santos, J., Arata, C., Malady, B., and Morse, D.E. (2019). Calibration between trigger and color: Neutralization of a genetically encoded coulombic switch and dynamic arrest precisely tune reflectin assembly. J Biol Chem 294, 16804–16815.

    Article  CAS  Google Scholar 

  • Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27–42.

    Article  CAS  Google Scholar 

  • Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340.

    Article  CAS  Google Scholar 

  • Li, S., Yang, P., Tian, E., and Zhang, H. (2013). Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol Cell 52, 421–433.

    Article  CAS  Google Scholar 

  • Liao, Y.C., Fernandopulle, M.S., Wang, G., Choi, H., Hao, L., Drerup, C. M., Patel, R., Qamar, S., Nixon-Abell, J., Shen, Y., et al. (2019). RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20.

    Article  CAS  Google Scholar 

  • Lin, Y., Mori, E., Kato, M., Xiang, S., Wu, L., Kwon, I., and McKnight, S. L. (2016). Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167, 789–802.e12.

    Article  CAS  Google Scholar 

  • Lin, Y., Protter, D.S.W., Rosen, M.K., and Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60, 208–219.

    Article  CAS  Google Scholar 

  • Liu, J., Perumal, N.B., Oldfield, C.J., Su, E.W., Uversky, V.N., and Dunker, A.K. (2006). Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888.

    Article  CAS  Google Scholar 

  • Loquet, A., El Mammeri, N., Stanek, J., Berbon, M., Bardiaux, B., Pintacuda, G., and Habenstein, B. (2018). 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138–139, 26–38.

    Article  Google Scholar 

  • Lowenthal, M.S., Markey, S.P., and Dosemeci, A. (2015). Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J Proteome Res 14, 2528–2538.

    Article  CAS  Google Scholar 

  • Lu, B., Ackerman, L., Jan, L.Y., and Jan, Y.N. (1999). Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol Cell 4, 883–891.

    Article  CAS  Google Scholar 

  • Lu, B., Rothenberg, M., Jan, L.Y., and Jan, Y.N. (1998). Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235.

    Article  CAS  Google Scholar 

  • Lu, F., Portz, B., and Gilmour, D.S. (2019). The C-terminal domain of RNA polymerase II is a multivalent targeting sequence that supports Drosophila development with only consensus heptads. Mol Cell 73, 1232–1242.e4.

    Article  CAS  Google Scholar 

  • Lu, H., Yu, D., Hansen, A.S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X., and Zhou, Q. (2018). Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323.

    Article  CAS  Google Scholar 

  • Luo, F., Gui, X., Zhou, H., Gu, J., Li, Y., Liu, X., Zhao, M., Li, D., Li, X., and Liu, C. (2018). Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat Struct Mol Biol 25, 341–346.

    Article  CAS  Google Scholar 

  • Lytle, T.K., Radhakrishna, M., and Sing, C.E. (2016). High charge density coacervate assembly via hybrid Monte Carlo single chain in mean field theory. Macromolecules 49, 9693–9705.

    Article  CAS  Google Scholar 

  • Ma, L., Tsai, M.Y., Wang, S., Lu, B., Chen, R., Yates, J.R., Zhu, X., and Zheng, Y. (2009). Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nat Cell Biol 11, 247–256.

    Article  CAS  Google Scholar 

  • Ma, W., and Mayr, C. (2018). A membraneless organelle associated with the endoplasmic reticulum enables 3′UTR-mediated protein-protein interactions. Cell 175, 1492–1506.e19.

    Article  CAS  Google Scholar 

  • Mackenzie, I.R., Nicholson, A.M., Sarkar, M., Messing, J., Purice, M.D., Pottier, C., Annu, K., Baker, M., Perkerson, R.B., Kurti, A., et al. (2017). TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816.e9.

    Article  CAS  Google Scholar 

  • Maharana, S., Wang, J., Papadopoulos, D.K., Richter, D., Pozniakovsky, A., Poser, I., Bickle, M., Rizk, S., Guillén-Boixet, J., Franzmann, T.M., et al. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921.

    Article  CAS  Google Scholar 

  • Markmiller, S., Soltanieh, S., Server, K.L., Mak, R., Jin, W., Fang, M.Y., Luo, E.C., Krach, F., Yang, D., Sen, A., et al. (2018). Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13.

    Article  CAS  Google Scholar 

  • Marrone, L., Drexler, H.C.A., Wang, J., Tripathi, P., Distler, T., Heisterkamp, P., Anderson, E.N., Kour, S., Moraiti, A., Maharana, S., et al. (2019). FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathol 138, 67–84.

    Article  CAS  Google Scholar 

  • Mateju, D., Franzmann, T.M., Patel, A., Kopach, A., Boczek, E.E., Maharana, S., Lee, H.O., Carra, S., Hyman, A.A., and Alberti, S. (2017). An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J 36, 1669–1687.

    Article  CAS  Google Scholar 

  • Mayer, B., Emery, G., Berdnik, D., Wirtz-Peitz, F., and Knoblich, J.A. (2005). Quantitative analysis of protein dynamics during asymmetric cell division. Curr Biol 15, 1847–1854.

    Article  CAS  Google Scholar 

  • McGurk, L., Gomes, E., Guo, L., Mojsilovic-Petrovic, J., Tran, V., Kalb, R. G., Shorter, J., and Bonini, N.M. (2018). Poly(ADP-Ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol Cell 71, 703–717.e9.

    Article  CAS  Google Scholar 

  • Michaeli, I., Overbeek, J.T.G., and Voorn, M.J. (1957). Phase separation of polyelectrolyte solutions. J Polymer Sci Part A Polymer Chem 23, 443–450.

    CAS  Google Scholar 

  • Miki, T., Kaufmann, W.A., Malagon, G., Gomez, L., Tabuchi, K., Watanabe, M., Shigemoto, R., and Marty, A. (2017). Numbers of presynaptic Ca2+ channel clusters match those of functionally defined vesicular docking sites in single central synapses. Proc Natl Acad Sci USA 114, E5246–E5255.

    Article  CAS  Google Scholar 

  • Milovanovic, D., Wu, Y., Bian, X., and De Camilli, P. (2018). A liquid phase of synapsin and lipid vesicles. Science 361, 604–607.

    Article  CAS  Google Scholar 

  • Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133.

    Article  CAS  Google Scholar 

  • Monahan, Z., Ryan, V.H., Janke, A.M., Burke, K.A., Rhoads, S.N., Zerze, G.H., O’Meally, R., Dignon, G.L., Conicella, A.E., Zheng, W., et al. (2017). Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J 36, 2951–2967.

    Article  CAS  Google Scholar 

  • Morris, M., Knudsen, G.M., Maeda, S., Trinidad, J.C., Ioanoviciu, A., Burlingame, A.L., and Mucke, L. (2015). Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18, 1183–1189.

    Article  CAS  Google Scholar 

  • Müller, F., and Tora, L. (2014). Chromatin and DNA sequences in defining promoters for transcription initiation. Biochim Biophys Acta Gene Regulat Mech 1839, 118–128.

    Article  Google Scholar 

  • Murakami, T., Qamar, S., Lin, J.Q., Schierle, G.S.K., Rees, E., Miyashita, A., Costa, A.R., Dodd, R.B., Chan, F.T.S., Michel, C.H., et al. (2015). ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690.

    Article  CAS  Google Scholar 

  • Murray, D.T., Kato, M., Lin, Y., Thurber, K.R., Hung, I., McKnight, S.L., and Tycko, R. (2017). Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627.e16.

    Article  CAS  Google Scholar 

  • Murthy, A.C., and Fawzi, N.L. (2020). The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy. J Biol Chem 295, 2375–2384.

    Article  CAS  Google Scholar 

  • Murthy, A.C., Dignon, G.L., Kan, Y., Zerze, G.H., Parekh, S.H., Mittal, J., and Fawzi, N.L. (2019). Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26, 637–648.

    Article  CAS  Google Scholar 

  • Nakamura, Y., Harada, H., Kamasawa, N., Matsui, K., Rothman, J.S., Shigemoto, R., Silver, R.A., DiGregorio, D.A., and Takahashi, T. (2015). Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development. Neuron 85, 145–158.

    Article  CAS  Google Scholar 

  • Naruse, H., Ishiura, H., Mitsui, J., Date, H., Takahashi, Y., Matsukawa, T., Tanaka, M., Ishii, A., Tamaoka, A., Hokkoku, K., et al. (2018). Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel hnRNPA1 mutation. Neurobiol Aging 61, 255.e9–255.e16.

    Article  CAS  Google Scholar 

  • Neil, H., Malabat, C., d’Aubenton-Carafa, Y., Xu, Z., Steinmetz, L.M., and Jacquier, A. (2009). Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042.

    Article  CAS  Google Scholar 

  • Nielsen, P.R., Nietlispach, D., Mott, H.R., Callaghan, J., Bannister, A., Kouzarides, T., Murzin, A.G., Murzina, N.V., and Laue, E.D. (2002). Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107.

    Article  CAS  Google Scholar 

  • Nipper, R.W., Siller, K.H., Smith, N.R., Doe, C.Q., and Prehoda, K.E. (2007). Gαi generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts. Proc Natl Acad Sci USA 104, 14306–14311.

    Article  CAS  Google Scholar 

  • Nishibuchi, G., Machida, S., Osakabe, A., Murakoshi, H., Hiragami-Hamada, K., Nakagawa, R., Fischle, W., Nishimura, Y., Kurumizaka, H., Tagami, H., et al. (2014). N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity. Nucleic Acids Res 42, 12498–12511.

    Article  CAS  Google Scholar 

  • Nozawa, K., Schneider, T.R., and Cramer, P. (2017). Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 545, 248–251.

    Article  CAS  Google Scholar 

  • Olszewska, D.A., Lonergan, R., Fallon, E.M., and Lynch, T. (2016). Genetics of frontotemporal dementia. Curr Neurol Neurosci Rep 16, 107.

    Article  Google Scholar 

  • Oon, C.H., and Prehoda, K.E. (2019). Asymmetric recruitment and actin-dependent cortical flows drive the neuroblast polarity cycle. eLife 8, e45815.

    Article  Google Scholar 

  • Overbeek, J.T., and Voorn, M.J. (1957). Phase separation in polyelectrolyte solutions theory of complex coacervation. J Cell Physiol Suppl 49, 7–22 discussion, 22–26.

    Article  CAS  Google Scholar 

  • Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Øvervatn, A., Bjørkøy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131–24145.

    Article  CAS  Google Scholar 

  • Parker, M.J., Fryer, A.E., Shears, D.J., Lachlan, K.L., McKee, S.A., Magee, A.C., Mohammed, S., Vasudevan, P.C., Park, S.M., Benoit, V., et al. (2015). De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am J Med Genet 167, 2231–2237.

    Article  CAS  Google Scholar 

  • Paro, R., and Hogness, D.S. (1991). The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88, 263–267.

    Article  CAS  Google Scholar 

  • Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077.

    Article  CAS  Google Scholar 

  • Patel, A., Malinovska, L., Saha, S., Wang, J., Alberti, S., Krishnan, Y., and Hyman, A.A. (2017). ATP as a biological hydrotrope. Science 356, 753–756.

    Article  CAS  Google Scholar 

  • Pavenstädt, H., Kriz, W., and Kretzler, M. (2003). Cell biology of the glomerular podocyte. Physiol Rev 83, 253–307.

    Article  Google Scholar 

  • Pawson, T. (1995). Protein modules and signalling networks. Nature 373, 573–580.

    Article  CAS  Google Scholar 

  • Pena, V., Hothorn, M., Eberth, A., Kaschau, N., Parret, A., Gremer, L., Bonneau, F., Ahmadian, M.R., and Scheffzek, K. (2008). The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction. EMBO Rep 9, 350–355.

    Article  CAS  Google Scholar 

  • Perico, L., Conti, S., Benigni, A., and Remuzzi, G. (2016). Podocyte-actin dynamics in health and disease. Nat Rev Nephrol 12, 692–710.

    Article  CAS  Google Scholar 

  • Perkins, T.T. (2014). Angstrom-precision optical traps and applications. Annu Rev Biophys, 43, 279–302.

    Article  CAS  Google Scholar 

  • Plaschka, C., Larivière, L., Wenzeck, L., Seizl, M., Hemann, M., Tegunov, D., Petrotchenko, E.V., Borchers, C.H., Baumeister, W., Herzog, F., et al. (2015). Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 518, 376–380.

    Article  CAS  Google Scholar 

  • Plys, A.J., Davis, C.P., Kim, J., Rizki, G., Keenen, M.M., Marr, S.K., and Kingston, R.E. (2019). Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev 33, 799–813.

    Article  CAS  Google Scholar 

  • Posey, A.E., Holehouse, A.S., and Pappu, R.V. (2018). Phase separation of intrinsically disordered proteins. Methods Enzymol 611, 1–30.

    Article  CAS  Google Scholar 

  • Protter, D.S.W., and Parker, R. (2016). Principles and properties of stress granules. Trends Cell Biol 26, 668–679.

    Article  CAS  Google Scholar 

  • Qamar, S., Wang, G.Z., Randle, S.J., Ruggeri, F.S., Varela, J.A., Lin, J.Q., Phillips, E.C., Miyashita, A., Williams, D., Ströhl, F., et al. (2018). FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15.

    Article  CAS  Google Scholar 

  • Qu, W., Wang, Z., and Zhang, H. (2020). Phase separation of the C. elegans Polycomb protein SOP-2 is modulated by RNA and sumoylation. Protein Cell 11, 202–207.

    Article  CAS  Google Scholar 

  • Quiroz, F.G., Fiore, V.F., Levorse, J., Polak, L., Wong, E., Pasolli, H.A., and Fuchs, E. (2020). Liquid-liquid phase separation drives skin barrier formation. Science 367, eaax9554.

    Article  CAS  Google Scholar 

  • Ramat, A., Hannaford, M., and Januschke, J. (2017). Maintenance of Miranda localization in Drosophila neuroblasts involves interaction with the cognate mRNA. Curr Biol 27, 2101–2111.e5.

    Article  CAS  Google Scholar 

  • Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.

    Article  CAS  Google Scholar 

  • Revenu, C., Athman, R., Robine, S., and Louvard, D. (2004). The coworkers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 5, 635–646.

    Article  CAS  Google Scholar 

  • Riback, J.A., Katanski, C.D., Kear-Scott, J.L., Pilipenko, E.V., Rojek, A.E., Sosnick, T.R., and Drummond, D.A. (2017). Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19.

    Article  CAS  Google Scholar 

  • Riggi, N., Cironi, L., Suvà, M.L., and Stamenkovic, I. (2001). Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 213, 4–20.

    Article  Google Scholar 

  • Roeder, R.G., and Rutter, W.J. (1969). Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237.

    Article  CAS  Google Scholar 

  • Rog, O., Köhler, S., and Dernburg, A.F. (2017). The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6, e21455.

    Article  Google Scholar 

  • Rohatgi, R., Nollau, P., Ho, H.Y.H., Kirschner, M.W., and Mayer, B.J. (2001). Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276, 26448–26452.

    Article  CAS  Google Scholar 

  • Rottner, K., Faix, J., Bogdan, S., Linder, S., and Kerkhoff, E. (2017). Actin assembly mechanisms at a glance. J Cell Sci 130, 3427–3435.

    Article  CAS  Google Scholar 

  • Ruthenburg, A.J., Li, H., Patel, D.J., and David Allis, C. (2001). Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8, 983–994.

    Article  Google Scholar 

  • Ryan, V.H., Dignon, G.L., Zerze, G.H., Chabata, C.V., Silva, R., Conicella, A.E., Amaya, J., Burke, K.A., Mittal, J., and Fawzi, N.L. (2018). Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol Cell 69, 465–479.e7.

    Article  CAS  Google Scholar 

  • Sabari, B.R., Dall’Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al. (2018). Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958.

    Article  Google Scholar 

  • Sanulli, S., Trnka, M.J., Dharmarajan, V., Tibble, R.W., Pascal, B.D., Burlingame, A.L., Griffin, P.R., Gross, J.D., and Narlikar, G.J. (2019). HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394.

    Article  CAS  Google Scholar 

  • Schmidt, H.B., and Görlich, D. (2016). Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem Sci 41, 46–61.

    Article  CAS  Google Scholar 

  • Schober, M., Schaefer, M., and Knoblich, J.A. (1999). Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551.

    Article  CAS  Google Scholar 

  • Schwamborn, J.C., Berezikov, E., and Knoblich, J.A. (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913–925.

    Article  CAS  Google Scholar 

  • Shan, Z., Tu, Y., Yang, Y., Liu, Z., Zeng, M., Xu, H., Long, J., Zhang, M., Cai, Y., and Wen, W. (2018). Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nat Commun 9, 737.

    Article  Google Scholar 

  • Shen, C.P., Jan, L.Y., and Jan, Y.N. (1991). Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458.

    Article  Google Scholar 

  • Sheng, M., and Hoogenraad, C.C. (2001). The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76, 823–847.

    Article  Google Scholar 

  • Shi, S.H., Jan, L.Y., and Jan, Y.N. (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75.

    Article  CAS  Google Scholar 

  • Shin, Y., and Brangwynne, C.P. (2017). Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382.

    Article  Google Scholar 

  • Shrinivas, K., Sabari, B.R., Coffey, E.L., Klein, I.A., Boija, A., Zamudio, A.V., Schuijers, J., Hannett, N.M., Sharp, P.A., Young, R.A., et al. (2019). Enhancer features that drive formation of transcriptional condensates. Mol Cell 15, 549–561.e7.

    Article  Google Scholar 

  • Siegrist, S.E., and Doe, C.Q. (2005). Microtubule-induced Pins/Gαi cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335.

    Article  CAS  Google Scholar 

  • Siller, K.H., and Doe, C.Q. (2009). Spindle orientation during asymmetric cell division. Nat Cell Biol 11, 365–374.

    Article  CAS  Google Scholar 

  • Siller, K.H., Cabernard, C., and Doe, C.Q. (2006). The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8, 594–600.

    Article  CAS  Google Scholar 

  • So, C., Seres, K.B., Steyer, A.M., Mönnich, E., Clift, D., Pejkovska, A., Möbius, W., and Schuh, M. (2019). A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 364, eaat9557.

    Article  CAS  Google Scholar 

  • Sontag, E.M., Samant, R.S., and Frydman, J. (2017). Mechanisms and functions of spatial protein quality control. Annu Rev Biochem 86, 97–122.

    Article  CAS  Google Scholar 

  • Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4, 49–60.

    Article  CAS  Google Scholar 

  • Spannl, S., Tereshchenko, M., Mastromarco, G.J., Ihn, S.J., and Lee, H.O. (2019). Biomolecular condensates in neurodegeneration and cancer. Traffic 20, 890–911.

    Article  CAS  Google Scholar 

  • Staby, L., O’Shea, C., Willemoës, M., Theisen, F., Kragelund, B.B., and Skriver, K. (2017). Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 474, 2509–2532.

    Article  CAS  Google Scholar 

  • Stamer, K., Vogel, R., Thies, E., Mandelkow, E., and Mandelkow, E.M. (2002). Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156, 1051–1063.

    Article  CAS  Google Scholar 

  • Stefani, M., and Dobson, C.M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81, 678–699.

    Article  CAS  Google Scholar 

  • Stolz, A., Ernst, A., and Dikic, I. (2014). Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16, 495–501.

    Article  CAS  Google Scholar 

  • Strom, A.R., Emelyanov, A.V., Mir, M., Fyodorov, D.V., Darzacq, X., and Karpen, G.H. (2017). Phase separation drives heterochromatin domain formation. Nature 547, 241–245.

    Article  CAS  Google Scholar 

  • Strome, S. (2005). Specification of the germ line. WormBook 1–10.

  • Su, X., Ditlev, J.A., Hui, E., Xing, W., Banjade, S., Okrut, J., King, D.S., Taunton, J., Rosen, M.K., and Vale, R.D. (2016). Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599.

    Article  CAS  Google Scholar 

  • Südhof, T.C. (2012). The presynaptic active zone. Neuron 75, 11–25.

    Article  Google Scholar 

  • Südhof, T.C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690.

    Article  Google Scholar 

  • Sun, D., Wu, R., Zheng, J., Li, P., and Yu, L. (2018). Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res 28, 405–415.

    Article  CAS  Google Scholar 

  • Swenson, J.M., Colmenares, S.U., Strom, A.R., Costes, S.V., and Karpen, G.H. (2016). The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 5, e16096.

    Article  Google Scholar 

  • Takahara, T., and Maeda, T. (2012). Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 47, 242–252.

    Article  CAS  Google Scholar 

  • Tang, A.H., Chen, H., Li, T.P., Metzbower, S.R., MacGillavry, H.D., and Blanpied, T.A. (2016). A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214.

    Article  CAS  Google Scholar 

  • Tatarakis, A., Behrouzi, R., and Moazed, D. (2017). Evolving models of heterochromatin: from foci to liquid droplets. Mol Cell 67, 725–727.

    Article  CAS  Google Scholar 

  • Tatavosian, R., Kent, S., Brown, K., Yao, T., Duc, H.N., Huynh, T.N., Zhen, C.Y., Ma, B., Wang, H., and Ren, X. (2019). Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 294, 1451–1463.

    Article  CAS  Google Scholar 

  • Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D., and Patel, D.J. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14, 1025–1040.

    Article  CAS  Google Scholar 

  • Taylor, N., Elbaum-Garfinkle, S., Vaidya, N., Zhang, H., Stone, H.A., and Brangwynne, C.P. (2016). Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. Soft Matter 12, 9142–9150.

    Article  CAS  Google Scholar 

  • Taylor, N.O., Wei, M.T., Stone, H.A., and Brangwynne, C.P. (2019). Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys J 117, 1285–1300.

    Article  CAS  Google Scholar 

  • Tian, Y., Li, Z., Hu, W., Ren, H., Tian, E., Zhao, Y., Lu, Q., Huang, X., Yang, P., Li, X., et al. (2010). C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042–1055.

    Article  CAS  Google Scholar 

  • Ting, J.T., Peça, J., and Feng, G. (2012). Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu Rev Neurosci 35, 49–71.

    Article  CAS  Google Scholar 

  • Tiwary, A.K., and Zheng, Y. (2019). Protein phase separation in mitosis. Curr Opin Cell Biol 60, 92–98.

    Article  CAS  Google Scholar 

  • Tsai, M.Y., Wang, S., Heidinger, J.M., Shumaker, D.K., Adam, S.A., Goldman, R.D., and Zheng, Y. (2006). A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887–1893.

    Article  CAS  Google Scholar 

  • Tsai, K.L., Yu, X., Gopalan, S., Chao, T.C., Zhang, Y., Florens, L., Washburn, M.P., Murakami, K., Conaway, R.C., Conaway, J.W., et al. (2017). Mediator structure and rearrangements required for holoenzyme formation. Nature 544, 196–201.

    Article  CAS  Google Scholar 

  • Vazquez, L.E., Chen, H.J., Sokolova, I., Knuesel, I., and Kennedy, M.B. (2004). SynGAP regulates spine formation. J Neurosci 24, 8862–8872.

    Article  CAS  Google Scholar 

  • Venkei, Z.G., and Yamashita, Y.M. (2018). Emerging mechanisms of asymmetric stem cell division. J Cell Biol 217, 3785–3795.

    Article  CAS  Google Scholar 

  • von Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E. M., and Mandelkow, E. (2001). Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J Biol Chem 276, 48165–48174.

    Article  CAS  Google Scholar 

  • Walczak, C.E., and Heald, R. (2008). Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265, 111–158.

    Article  CAS  Google Scholar 

  • Walters, R.W., Muhlrad, D., Garcia, J., and Parker, R. (2015). Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21, 1660–1671.

    Article  CAS  Google Scholar 

  • Wang, C., Duan, Y., Duan, G., Ma, Z., Zhang, K., Deng, X., Qian, B., Gu, J., Wang, Q., Zhang, S., et al. (2019a). Stress induces cytoprotective TDP-43 nuclear bodies through lncRNA NEAT1-promoted phase separation. BioRxiv, https://doi.org/10.1101/802058.

  • Wang, H., Ouyang, Y., Somers, W.G., Chia, W., and Lu, B. (2007). Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449, 96–100.

    Article  CAS  Google Scholar 

  • Wang, J., Choi, J.M., Holehouse, A.S., Lee, H.O., Zhang, X., Jahnel, M., Maharana, S., Lemaitre, R., Pozniakovsky, A., Drechsel, D., et al. (2018). A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16.

    Article  CAS  Google Scholar 

  • Wang, K., and Singer, S.J. (1977). Interaction of filamin with F-actin in solution. Proc Natl Acad Sci USA 74, 2021–2025.

    Article  CAS  Google Scholar 

  • Wang, L., Gao, Y., Zheng, X., Liu, C., Dong, S., Li, R., Zhang, G., Wei, Y., Qu, H., Li, Y., et al. (2019b). Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell 76, 646–659.e6.

    Article  CAS  Google Scholar 

  • Wang, L., Hu, M., Zuo, M.Q., Zhao, J., Wu, D., Huang, L., Wen, Y., Li, Y., Chen, P., Bao, X., et al. (2020). Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin. Cell Res https://doi.org/10.1038/s41422-020-0288-7.

  • Wang, P., Wander, C.M., Yuan, C.X., Bereman, M.S., and Cohen, T.J. (2017a). Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat Commun 8, 82.

    Article  Google Scholar 

  • Wang, S.C., Low, T.Y.F., Nishimura, Y., Gole, L., Yu, W., and Motegi, F. (2017b). Cortical forces and CDC-42 control clustering of PAR proteins for Caenorhabditis elegans embryonic polarization. Nat Cell Biol 19, 988–995.

    Article  CAS  Google Scholar 

  • Wang, S.S.H., Held, R.G., Wong, M.Y., Liu, C., Karakhanyan, A., and Kaeser, P.S. (2016a). Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking. Neuron 91, 777–791.

    Article  Google Scholar 

  • Wang, Z., and Zhang, H. (2019). Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends Cell Biol 29, 417–427.

    Article  CAS  Google Scholar 

  • Wang, Z., Miao, G., Xue, X., Guo, X., Yuan, C., Wang, Z., Zhang, G., Chen, Y., Feng, D., Hu, J., et al. (2016b). The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol Cell 63, 781–795.

    Article  CAS  Google Scholar 

  • Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K.M., Bennett, R. E., Dujardin, S., Laskowski, P.R., MacKenzie, D., Kamath, T., Commins, C., et al. (2018). Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37, e98049.

    Article  Google Scholar 

  • Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443.

    Article  CAS  Google Scholar 

  • Weirich, K.L., Banerjee, S., Dasbiswas, K., Witten, T.A., Vaikuntanathan, S., and Gardel, M.L. (2017). Liquid behavior of cross-linked actin bundles. Proc Natl Acad Sci USA 114, 2131–2136.

    Article  CAS  Google Scholar 

  • Wen, W., and Zhang, M. (2018). Protein complex assemblies in epithelial cell polarity and asymmetric cell division. J Mol Biol 430, 3504–3520.

    Article  CAS  Google Scholar 

  • Wirtz-Peitz, F., Nishimura, T., and Knoblich, J.A. (2008). Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135, 161–173.

    Article  CAS  Google Scholar 

  • Wodarz, A., Ramrath, A., Kuchinke, U., and Knust, E. (1999). Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547.

    Article  CAS  Google Scholar 

  • Woodruff, J.B., Hyman, A.A., and Boke, E. (2017). Organization and function of non-dynamic biomolecular condensates. Trends Biochem Sci 43, 81–94.

    Article  Google Scholar 

  • Wright, P.E., and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16, 18–29.

    Article  CAS  Google Scholar 

  • Wright, R.H.G., Le Dily, F., and Beato, M. (2019). ATP, Mg2+, nuclear phase separation, and genome accessibility. Trends Biochem Sci 44, 565–574.

    Article  CAS  Google Scholar 

  • Wu, H., and Fuxreiter, M. (2016). The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066.

    Article  CAS  Google Scholar 

  • Wu, X., Cai, Q., Shen, Z., Chen, X., Zeng, M., Du, S., and Zhang, M. (2019a). RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol Cell 73, 971–984.e5.

    Article  CAS  Google Scholar 

  • Wu, P., Zhang, T., Liu, B., Fei, P., Cui, L., Qin, R., Zhu, H., Yao, D., Martinez, R.J., Hu, W., et al. (2019b). Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol Cell 73, 1015–1027.e7.

    Article  CAS  Google Scholar 

  • Wu, X.L., Piña-Crespo, J., Zhang, Y.W., Chen, X.C., and Xu, H.X. (2017). Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease. Chin Med J 130, 2978–2990.

    Article  CAS  Google Scholar 

  • Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102–1109.

    Article  CAS  Google Scholar 

  • Yamasaki, A., Alam, J.M., Noshiro, D., Hirata, E., Fujioka, Y., Suzuki, K., Ohsumi, Y., and Noda, N.N. (2020). Liquidity is a critical determinant for selective autophagy of protein condensates. Mol Cell 77, 1163–1175.e9.

    Article  CAS  Google Scholar 

  • Yao, R.W., Xu, G., Wang, Y., Shan, L., Luan, P.F., Wang, Y., Wu, M., Yang, L.Z., Xing, Y.H., Yang, L., et al. (2019). Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol Cell 76, 767–783.e11.

    Article  CAS  Google Scholar 

  • Yin, H.L., and Stossel, T.P. (1979). Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583–586.

    Article  CAS  Google Scholar 

  • Yin, H.L., Hartwig, J.H., Maruyama, K., and Stossel, T.P. (1981). Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem 256, 9693–9697.

    Article  CAS  Google Scholar 

  • Yoshizawa, T., Ali, R., Jiou, J., Fung, H.Y.J., Burke, K.A., Kim, S.J., Lin, Y., Peeples, W.B., Saltzberg, D., Soniat, M., et al. (2018). Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173, 693–705.e22.

    Article  CAS  Google Scholar 

  • Zaffagnini, G., Savova, A., Danieli, A., Romanov, J., Tremel, S., Ebner, M., Peterbauer, T., Sztacho, M., Trapannone, R., Tarafder, A.K., et al. (2018). p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J 37, pii: e98308.

    Article  Google Scholar 

  • Zemła, J., Danilkiewicz, J., Orzechowska, B., Pabijan, J., Seweryn, S., and Lekka, M. (2018). Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 73, 115–124.

    Article  Google Scholar 

  • Zeng, M., Bai, G., and Zhang, M. (2017). Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. Small GTPases 10, 296–304.

    Google Scholar 

  • Zeng, M., Chen, X., Guan, D., Xu, J., Wu, H., Tong, P., and Zhang, M. (2018). Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e16.

    Article  CAS  Google Scholar 

  • Zeng, M., Díaz-Alonso, J., Ye, F., Chen, X., Xu, J., Ji, Z., Nicoll, R.A., and Zhang, M. (2019). Phase separation-mediated TARP/MAGUK complex condensation and AMPA receptor synaptic transmission. Neuron 104, 529–543.e6.

    Article  CAS  Google Scholar 

  • Zeng, M., Shang, Y., Araki, Y., Guo, T., Huganir, R.L., and Zhang, M. (2016). Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175.e12.

    Article  CAS  Google Scholar 

  • Zhang, G., Wang, Z., Du, Z., and Zhang, H. (2018a). mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492–1506.e22.

    Article  CAS  Google Scholar 

  • Zhang, L., Köhler, S., Rillo-Bohn, R., and Dernburg, A.F. (2018b). A compartmentalized signaling network mediates crossover control in meiosis. eLife 7, e30789.

    Article  Google Scholar 

  • Zhang, X., Lin, Y., Eschmann, N.A., Zhou, H., Rauch, J.N., Hernandez, I., Guzman, E., Kosik, K.S., and Han, S. (2017). RNA stores tau reversibly in complex coacervates. PLoS Biol 15, e2002183.

    Article  Google Scholar 

  • Zhang, Y., Yan, L., Zhou, Z., Yang, P., Tian, E., Zhang, K., Zhao, Y., Li, Z., Song, B., Han, J., et al. (2009). SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136, 308–321.

    Article  CAS  Google Scholar 

  • Zhang, Z.C., and Chook, Y.M. (2012). Structural and energetic basis of ALS-causing mutations in the atypical proline–tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc Natl Acad Sci USA 109, 12017–12021.

    Article  CAS  Google Scholar 

  • Zhao, Y.G., and Zhang, H. (2019a). Autophagosome maturation: an epic journey from the ER to lysosomes. J Cell Biol 218, 757–770.

    Article  CAS  Google Scholar 

  • Zhao, Y.G., and Zhang, H. (2019b). Core autophagy genes and human diseases. Curr Opin Cell Biol 61, 117–125.

    Article  CAS  Google Scholar 

  • Zhao, Y.G., and Zhang, H. (2018). Formation and maturation of autophagosomes in higher eukaryotes: a social network. Curr Opin Cell Biol 53, 29–36.

    Article  CAS  Google Scholar 

  • Zhao, Y.G., Chen, Y., Miao, G., Zhao, H., Qu, W., Li, D., Wang, Z., Liu, N., Li, L., Chen, S., et al. (2017). The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol Cell 67, 974–989.e6.

    Article  CAS  Google Scholar 

  • Zhao, S., Cheng, L., Gao, Y., Zhang, B., Zheng, X., Wang, L., Li, P., Sun, Q., and Li, H. (2019). Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res 29, 54–66.

    Article  CAS  Google Scholar 

  • Zheng, Y. (2010). A membranous spindle matrix orchestrates cell division. Nat Rev Mol Cell Biol 11, 529–535.

    Article  CAS  Google Scholar 

  • Zhong, W., Feder, J.N., Jiang, M.M., Jan, L.Y., and Jan, Y.N. (1996). Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53.

    Article  CAS  Google Scholar 

  • Zhu, J., Shang, Y., and Zhang, M. (2016a). Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci 17, 209–223.

    Article  CAS  Google Scholar 

  • Zhu, J., Shang, Y., Xia, C., Wang, W., Wen, W., and Zhang, M. (2011a). Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules. EMBO J 30, 4986–4997.

    Article  CAS  Google Scholar 

  • Zhu, J., Wen, W., Zheng, Z., Shang, Y., Wei, Z., Xiao, Z., Pan, Z., Du, Q., Wang, W., and Zhang, M. (2011b). LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gαi/LGN/NuMA pathways. Mol Cell 43, 418–431.

    Article  CAS  Google Scholar 

  • Zhu, K., Shan, Z., Zhang, L., and Wen, W. (2016b). Phospho-Pon binding-mediated fine-tuning of Plk1 activity. Structure 24, 1110–1119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Isabel Hanson for editing work. Work in Hong Zhang’s laboratory was supported by grants from the Beijing Municipal Science and Technology Committee (Z181100001318003), the National Natural Science Foundation of China (31421002, 31561143001, 31630048, and 31790403), the Ministry of Science and Technology of China (2017YFA0503401), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB19000000) and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC006). Work in Xiong Ji’s laboratory was supported by funds from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (2017YFA0506600 and 31871309). Work in Pilong Li’s laboratory was supported by funds from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (2019YFA0508403 and 31871443). Work in Cong Liu’s laboratory was supported by grants from the Ministry of Science and Technology of China (2016YFA0501902), the National Natural Science Foundation of China (91853113 and 31872716), the Science and Technology Commission of Shanghai Municipality (18JC1420500), the Shanghai Municipal Science and Technology Major Project (2019SHZDZX02). Work in Jizhong Lou’s laboratory was supported by grants from the Ministry of Science and Technology of China (2019YFA0707000), the National Natural Science Foundation of China (11672317). Work in Wenyu Wen’s laboratory was supported by grants from the Ministry of Science and Technology of China (2019YFA0508401), the National Natural Science Foundation of China (31871394 and 31670730), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01) and ZJLab. Work in Xueliang Zhu’s laboratory was supported by grants from the National Natural Science Foundation of China (31420103916 and 31991192) and CAS (XDB19020102). Research in Mingjie Zhang’s laboratory was supported by grants from RGC of Hong Kong (AoE-M09-12 and C6004-17G) and National Key R&D Program of China (2016YFA0501903 and 2019YFA0508402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhang, Xiong Ji, Pilong Li, Cong Liu, Jizhong Lou, Wenyu Wen, Mingjie Zhang or Xueliang Zhu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ji, X., Li, P. et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63, 953–985 (2020). https://doi.org/10.1007/s11427-020-1702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1702-x

Keywords

Navigation