Skip to main content
Log in

Incorporation and distribution of saturated and unsaturated fatty acids into nuclear lipids of hepatic cells

  • Published:
Lipids

Abstract

Liver nuclear incorporation of stearic (18∶0), linoleic (18∶2n−6), and arachidonic (20∶4n−6) acids was studied by incubation in vitro of the [1-14C] fatty acids with nuclei, with or without the cytosol fraction at different times. The [1-14C] fatty acids were incorporated into the nuclei as free fatty acids in the following order: 18∶0>20∶4n−6≫18∶2n−6, and esterified into nuclear lipids by an acyl-CoA pathway. All [1-14C] fatty acids were esterified mainly to phospholipids and triacylglycerols and in a minor proportion to diacylglycerols. Only [1-14C] 18∶2n−6-CoA was incorporated into cholesterol esters. The incorporation was not modified by cytosol addition. The incorporation of 20∶4n−6 into nuclear phosphatidylcholine (PC) pools was also studied by incubation of liver nuclei in vitro with [1-14C]20∶4n−6-CoA, and nuclear labeled PC molecular species were determined. From the 15 PC nuclear molecular species determined, five were labeled with [1-14C]20∶4n−6-CoA: 18∶0–20∶4, 16∶0–20∶4, 18∶1–20∶4, 18∶2–20∶4, and 20∶4–20∶4. The highest specific radioactivity was found in 20∶4–20∶4 PC, which is a minor species. In conclusion, liver cell nuclei possess the necessary enzymes to incorporate exogenous saturated and unsaturated fatty acids into lipids by an acyl-CoA pathway, showing specificity for each fatty acid. Liver cell nuclei also utilize exogenous 20∶4n−6-CoA to synthesize the major molecular species of PC with 20∶4n−6 at the sn-2 position. However, the most actively synthesized is 20∶4–20∶4 PC, which is a quantitatively minor component. The labeling pattern of 20∶4–20∶4 PC would indicate that this molecular species is synthesized mainly by the de novo pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CE:

cholesterol ester

DG:

diacylglycerol

ELSD:

evaporative light scattering detector

FABP:

fatty acid binding protein

FFA:

free fatty acid

GC:

gas chromatography

GLC:

gas-liquid chromatography

HPLC:

high-performance liquid chromatography

IM:

incubation mixture

N:

nuclear pellet

PC:

phosphatidylcholine

PL:

phospholipid

PPAR:

peroxisome proliferator activated receptor

PUFA:

polyunsaturated fatty acid

RHPLC:

reversed-phase HPLC

TG:

triacylglycerol

TLC:

thin-layer chromatography

References

  1. Mac Donald, J.I.S., and Sprecher, H. (1991) Phospholipid Fatty Acid Remodeling in Mammalian Cells, Biochim. Biophys. Acta 1084, 105–121.

    Google Scholar 

  2. Surette, M.E., Winkler, J.D., Fouteh, A.N., and Chilton, F.H. (1996) Relationship Between Arachidonate-Phospholipid Remodeling and Apoptosis, Biochemistry 35, 9187–9196.

    Article  PubMed  CAS  Google Scholar 

  3. De Vries, J.E., Vork, M.M., Roemen, T.H.M., Jong, Y.F., Cleutjens, J.P.M., van der Vusse, G.J., and van Bilsen, M. (1997) Saturated but Not Mono-unsaturated Fatty Acids Induce Apoptotic Cell Death in Neonatal Rat Ventricular Myocytes, J. Lipid Res. 38, 1384–1394.

    PubMed  Google Scholar 

  4. Eling, T.E., and Glasgow, W.C. (1994) Cellular Proliferation and Lipid Metabolism: Importance of Lipoxygenases in Modulating Epidermal Growth Factor-Dependent Mitogenesis, Cancer Metastasic Rev. 13, 397–410.

    Article  CAS  Google Scholar 

  5. Honn, K.V., Tang, D.G., Grossi, I., Duniec, Z.M., Timar, J., Renaud, C., Leithauser, M., Blair, I., and Johnson, C.R. (1994) Tumor Cell-Derived 12 (5)-Hydroxyeicosatetraenoic Acid Induces Microvascular Endothelial Cell Retraction, Cancer Res. 54, 565–574.

    PubMed  CAS  Google Scholar 

  6. Clarke, S.D. (1994) Dietary Polyunsaturated Fatty Acid Regulation of Gene Transcription, Annu. Rev. Nutr. 14, 83–98.

    Article  PubMed  CAS  Google Scholar 

  7. Ntambi, J.M. (1995) The Regulation of Stearoyl-CoA Desaturase (SCD), Prog. Lipid Res. 34, 139–150.

    Article  PubMed  CAS  Google Scholar 

  8. Tebbey, P.W., and Buttke, T.M. (1992) Arachidonic Acid Regulates Unsaturated Fatty Acid Synthesis in Lymphocytes by Inhibiting Stearoyl-CoA Desaturase Gene Expression, Biochim. Biophys. Acta 1171, 27–34.

    PubMed  CAS  Google Scholar 

  9. Ntambi, J.M. (1999) Regulation of Stearoyl-CoA Desaturase by Polyunsaturated Fatty Acids and Cholesterol, J. Lipid Res. 40, 1549–1558.

    PubMed  CAS  Google Scholar 

  10. Jump, D.B., Clarke, S.D., Mac Dougald, O.A., and Thelen, A. (1993) Polyunsaturated Fatty Acids Inhibit S14 Gene Transcription in Rat Liver and Cultured Hepatocytes, Proc. Natl. Acad. Sci. USA 90, 8454–8458.

    Article  PubMed  CAS  Google Scholar 

  11. Tomlinson, J.E., Nakayama, R., and Holten, D. (1988) Repression of Pentose Phosphate Pathway Dehydrogenase Synthesis and mRNA by Dietary Fat in Rats, J. Nutr. 118, 408–414.

    PubMed  CAS  Google Scholar 

  12. Toussant, M.J., Wilson, M.D., and Clark, S.D. (1981) Coordinate Suppression of Liver Acetyl-CoA Carboxylase and Fatty Acid Synthetase by Polyunsaturated Fat, J. Nutr. 111, 146–153.

    PubMed  CAS  Google Scholar 

  13. Landschulz, K.T., Jump, D.B., Mac Dougald, O.A., and Lane, M.D. (1994) Transcriptional Control of the Stearoyl-CoA Desaturase 1-Gene by Polyunsaturated Fatty Acids, Biochim. Biophys. Acta 200, 763–768.

    CAS  Google Scholar 

  14. Tebbey, P.W., and Buttke, T.M. (1992) Stearoyl-CoA Desaturase Gene Expression in Lymphocytes, Biochem. Biophys. Res. Commun. 186, 531–536.

    Article  PubMed  CAS  Google Scholar 

  15. Tebbey, P.W., and Buttke, T.M. (1993) Independent Arachidonic Acid-Mediated Gene Regulatory Pathway in Lymphocytes, Biochem. Biophys. Res. Commun. 194, 862–868.

    Article  PubMed  CAS  Google Scholar 

  16. Ves-Losada, A., and Brenner, R.R. (1995) Fatty Acid Δ5 Desaturation in Rat Liver Cell Nuclei, Mol. Cell. Biochem. 142, 163–170.

    Article  PubMed  CAS  Google Scholar 

  17. Schievella, A.A., Regier, M.K., Smith, W.L., and Lih-Ling, L. (1995) Calcium-Mediated Translocation of Cytosolic Phospholipase A2 to the Nuclear Envelope and Endoplasmic Reticulum, J. Biol. Chem. 270, 30749–30754.

    Article  PubMed  CAS  Google Scholar 

  18. Brenner, R.R. (1974) The Oxidative Desaturation of Unsaturated Fatty Acids in Animals, Mol. Cell. Biochem. 3, 41–52.

    Article  PubMed  CAS  Google Scholar 

  19. Ves-Losada, A., and Brenner, R.R. (1996) Long-Chain Fatty Acyl-CoA Synthetase Enzymatic Activity in Rat Liver Cell Nuclei, Mol. Cell. Biochem. 159, 1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ves-Losada, A., and Brenner, R.R. (1998) Incorporation of Δ5 Desaturase Substrate (dihomogammalinolenic acid, 20∶3(n−6)) and Product (arachidonic acid (20∶4(n−6)) into Rat Liver Cell Nuclei, Prostaglandins Leukotrienes Essent. Fatty Acids 59, 39–47.

    Article  CAS  Google Scholar 

  21. Capriotti, A.M., Furth, E.E., Arrasmith, M.E., and Laposata, M.J. (1988) Arachidonate Released upon Agonist Stimulation Preferentially Originates from Arachidonate Most Recently Incorporated into Nuclear Membrane Phospholipids, J. Biol. Chem. 263, 10029–10034.

    PubMed  CAS  Google Scholar 

  22. Ozols, J. (1997) Degradation of Hepatic Stearoyl-CoA Δ9 Desaturase, Mol. Biol. Cell. 8, 2281–2290.

    PubMed  CAS  Google Scholar 

  23. Actis Dato, S.M., Catalá, A., and Brenner, R.R. (1973) Circadian Rhythm of Fatty Acid Desaturation in Mouse Liver, Lipids 8, 1–6.

    PubMed  CAS  Google Scholar 

  24. Blobel, G., and Potter, V.R. (1966) Nuclei from Rat Liver: Isolation Method That Combines Purity with High Yield. Science 154, 1662–1665.

    Article  PubMed  CAS  Google Scholar 

  25. Kasper, C.B. (1974) Isolation and Properties of the Nuclear Envelope, Methods Enzymol. 31, 279–292.

    Article  PubMed  CAS  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin-Phenol Reagent, J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  27. Shephard, E.H., and Hübscher, G. (1969) Phosphatidate Biosynthesis in Mitochondrial Subfractions of Rat Liver, Biochem. J. 118, 429–440.

    Google Scholar 

  28. Johnson, M.K. (1960) The Intracellular Distribution of Glycolytic and Other Enzymes in Rat-Brain Homogenates and Mitochondrial Preparations, Biochem. J. 77, 610–618.

    PubMed  CAS  Google Scholar 

  29. Michell, R.H., Karnovsky, M.J., and Karnovsky, M.F. (1970) The Distribution of Some Granule-Associated Enzymes in Guinea Pig Polymorphonuclear Leucocytes, Biochem. J. 116, 207–216.

    PubMed  CAS  Google Scholar 

  30. Porteous, J.W., and Clark, B. (1975) The Isolation and Characterization of Subcellular Components of the Epithelial Cells of Rabbit Small Intestine, Biochem. J. 96, 159–171.

    Google Scholar 

  31. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  32. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipid with Boron Fluoride Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  33. Letter, W.S. (1992) A Rapid Method for Phospholipid Class Separation by HPLC Using an Evaporative Light-Scattering Detector, J. Liq. Chromatogr. 15, 253–266.

    CAS  Google Scholar 

  34. Brenner, R.R., Bernasconi, A.M., and Garda, H.A. (2000) Effect of Experimental Diabetes on the Fatty Acid Composition, Molecular Species of Phosphatidylcholine and Physical Properties of Hepatic Microsomal Membranes, Prostaglandins Leukotrienes Essent. Fatty Acids 63, 167–176.

    Article  CAS  Google Scholar 

  35. Schmid, P.C., Spimrova, I., and Schmid, H.O. (1995) Incorporation of Exogenous Fatty Acids in Molecular Species of Rat Hepatocytes Phosphatidylcholine, Arch. Biochem. Biophys. 322, 306–312.

    Article  PubMed  CAS  Google Scholar 

  36. Waku, K. (1992) Origins and Fates of Fatty Acyl-CoA Esters, Biochim. Biophys. Acta 1124, 101–111.

    PubMed  CAS  Google Scholar 

  37. Elholm, M., Garras, A., Neve, A., Tornehave, D., Lund, T.B., Skorve, J., Flatmark, T., Kristiansen, K., and Berge, R.K. (2000) Long-Chain Acyl-CoA Esters and Acyl-CoA Binding Protein Are Present in the Nucleus of Rat Liver Cells, J. Lipid Res. 41, 538–545.

    PubMed  CAS  Google Scholar 

  38. Hertz, R., Magenheim, J., Berman, I., and Bar-Tata, J. (1998) Fatty Acyl-CoA Thioesters Are Ligands of Hepatic Nuclear Factor-4α, Nature 392, 512–516.

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton, J.A. (1998) Fatty Acid Transport: Difficult or Easy? J. Lipid Res. 39, 467–481.

    PubMed  CAS  Google Scholar 

  40. Glatz, J.F.C., Börchers, T., Spener, F., and van der Vuse, G.J. (1995) Fatty Acids in Cell Signalling: Modulation by Lipid Binding Proteins, Prostaglandins, Leukotrienes Essent. Fatty Acids 52, 121–127.

    Article  CAS  Google Scholar 

  41. Börchers, T., Unterberg, C.U., Rüdel, H., Robenek, H., and Spener, F. (1989) Subcellular Distribution of Cardiac Fatty Acid-Binding Protein in Bovine Heart Muscle and Quantitation with an Enzyme-Linked Immunosorbent Assay, Biochim. Biophys. Acta 1002, 54–61.

    PubMed  Google Scholar 

  42. Baker, R.R., and Chang, H.Y. (1983) The Rapid Incorporation of Radioactive Fatty Acid into Triacylglycerols During the in vitro Acylation of Native Lipids of Neuronal Nuclei, Biochim. Biophys. Acta 752, 1–9.

    PubMed  CAS  Google Scholar 

  43. Baker, R.R., and Chang, H.Y. (1987) The Incorporation of Fatty Acids into Triacylglycerols of Isolated Neuronal Nuclear Envelopes: the Influence of Thiol Reducing Reagents and Chromatin, Biochim. Biophys. Acta 920, 285–292.

    PubMed  CAS  Google Scholar 

  44. Stadler, J., and Franke, W.W. (1973) Nuclear Membranes and Plasma Membranes from Hen Erythrocytes. III. Localization of Activities Incorporating Fatty Acids into Phospholipids, Biochim. Biophys. Acta 311, 205–213.

    Article  PubMed  CAS  Google Scholar 

  45. Surette, M.E., and Chilton, F.H. (1998) The Distribution and Metabolism of Arachidonate-Containing Phospholipids in Cellular Nuclei, Biochem. J. 330, 915–921.

    PubMed  CAS  Google Scholar 

  46. Rosenthal, M.D. (1987) Fatty Acid of Isolated Mammalian Cells, Prog. Lipid Res. 26, 87–124.

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong, M.K., Bake, W.L., and Clarke, S.D. (1991) Arachidonic Acid Suppression of Fatty Acid Synthase Gene Expression in Cultured Rat Hepatocytes, Biochem. Biophys. Res. Commun. 117, 1056–1061.

    Article  Google Scholar 

  48. Albi, E., Mersel, M., Tomassoni, M.L., and Viola-Magni, M.P. (1994) Rat Liver Chromatin Phospholipids, Lipids 29, 715–719.

    PubMed  CAS  Google Scholar 

  49. Albi, E., and Viola-Magni, M.P. (1997) Chromatin Neutral Sphingomyelinase and Its Role in Hepatic Regeneration, Biochem. Biophys. Res. Commun. 236, 29–33.

    Article  PubMed  CAS  Google Scholar 

  50. Albi, E., Peloso, I., and Magni, M.V. (1999) Nuclear Membrane Sphingomyelin-Cholesterol Changes in Rat Liver After Hepatectomy, Biochem. Biophys. Res. Commun. 262, 692–695.

    Article  PubMed  CAS  Google Scholar 

  51. Blank, M.L., Cress, E.A., Robinson, M., and Snyder, F. (1985) Metabolism of Unique Diarachidonyl and Linoleoylarachidonoyl Species of Ethanolamine and Choline Phosphoglycerides in Rat Testes, Biochim. Biophys. Acta 833, 366–371.

    PubMed  CAS  Google Scholar 

  52. Robinson, M., Blank, M.L., and Snyder, F. (1998) Highly Unsaturated Phospholipid Molecular Species or Rat Erythrocyte Membranes: Selective Incorporation of Arachidonic Acid into Phosphoglycerides Containing Polyunsaturation in Both Acyl Chains, Arch. Biochem. Biophys. 250, 271–279.

    Article  Google Scholar 

  53. Chilton, F.H., and Murphy, R.C. (1987) Stimulated Production and Natural Occurrence of 1,2-Diarachidonoyl-glycerophosphocholine in Human Neutrophils. Biochem. Biophys. Res. Commun. 145, 1126–1133.

    Article  PubMed  CAS  Google Scholar 

  54. Schmid, P.C., Spimrova, I., and Schmid, O.H. (1997) Generation and Remodeling of Highly Polyunsaturated Molecular Species of Rat Hepatocyte Phospholipids, Lipids 32, 1181–1187.

    Article  PubMed  CAS  Google Scholar 

  55. Sugimoto, H., and Yamashita, S. (1999) Characterization of the Transacylase Activity of Rat Liver 60-kDa Lysophospholipase-Transacylase. Acyl Transfer from the sn-2 to the sn-1 Position. Biochim. Biophys. Acta 1438, 264–272.

    PubMed  CAS  Google Scholar 

  56. Regier, M.K., DeWitt, D.L., Schindler, M.S., and Smith, W. (1993) Subcellular Localization of Prostaglandin Endoperoxide Synthase-2 in Murine 3T3 Cells, Arch. Biochem. Biophys. 301, 439–444.

    Article  CAS  Google Scholar 

  57. Woods, J.W., Evans, J.F., Ethier, D., Scott, S., Vickers, P.J., Hearn, L., Heibein, J.A., Charleson, S., and Singer, I.I. (1993) 5-Lipoxygenase and 5-Lipoxygenase Activity Protein Are Localized in the Nuclear Envelope of Activated Human Leukocytes, J. Exp. Med. 178, 1935–1946.

    Article  PubMed  CAS  Google Scholar 

  58. Morita, I., Schindler, M.S., Regier, M.K., Otto, J., Hori, T., DeWitt, D.L., and Smith, W. (1995) Different Intracellular Locations for Prostaglandin Endoperoxide H Synthase-1 and-2, J. Biol. Chem. 270, 10902–10908.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ves-Losada.

About this article

Cite this article

Ves-Losada, A., Maté, S.M. & Brenner, R.R. Incorporation and distribution of saturated and unsaturated fatty acids into nuclear lipids of hepatic cells. Lipids 36, 273–282 (2001). https://doi.org/10.1007/s11745-001-0718-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0718-4

Keywords

Navigation