Skip to main content
Log in

Generation and remodeling of highly polyunsaturated molecular species of rat hepatocyte phospholipids

  • Published:
Lipids

Abstract

Freshly isolated rat hepatocytes were incubated for 20 min with [U-14C]glycerol in the presence or absence of unlabeled linoleic (18∶2n-6), arachidonic (20∶4n-6), or docosahexaenoic (22∶6n-3) acid, added as albumin complex in 10% ethanol. Most of the radioactivity (≈95%) recovered in hepatocyte lipids was present in phosphatidylcholine (PC), phosphatidylethanolamine (PF), and triacylglycerol (TAG). The presence of exogenous fatty acids resulted in (i) higher incorporation of [U-14C]glycerol, (ii) higher percentage of label in TAG, and (iii) enhanced formation of PC and PE molecular species bearing the exogenous fatty acid at both the sn-1 and sn-2 positions of glycerol. In each case, these molecular species contained 60 to 70% of the label in that lipid class. Further incubation of the cells for 40 and 80 min in the absence of labeled substrate and exogenous fatty acids resulted in a redistribution of label among PC and PE molecular species due to deacylation-reacylation at the sn-1 position of glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

diacylglycerols

DNB:

dinitrobenzoate

HPLC:

high-performance liquid chromatography

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

TG:

triacylglycerols

TLC:

thin-layer chromatography. Also, 18∶2, 20∶3, 20∶4, 22∶5, and 22∶6 denote 18∶2n-6, 20∶3n-6, 20∶4n-6, 22∶5n-3, and 22∶6n-3, respectively

References

  1. van Golde, L.M.G., and van den Bergh, S.G 1977) Liver, in Lipid Metabolism in Mammals (Snyder, F., ed.), Vol. 1, pp. 35–149, Plenum, New York.

    Google Scholar 

  2. Holub, B.J., and Kuksis, A. (1978) Metabolism of Molecular Species of Diacylglycerophospholipids, Adv. Lipid Res. 16, 1–125.

    PubMed  CAS  Google Scholar 

  3. Vance, D.E. (1996) Glycerolipid Biosynthesis in Eukaryotes, in New Comprehensive Biochemistry, Vol. 31, Biochemistry of Lipids, Lipoproteins, and Membranes (Vance, D.E., and Vance, J.E., eds.), pp. 153–165, Elsevier, Amsterdam.

    Google Scholar 

  4. MacDonald, J.I.S., and Sprecher, H. (1991) Phospholipid Fatty Acid Remodeling in Mammalian Cells, Biochim. Biophys. Acta 1084, 105–121.

    PubMed  CAS  Google Scholar 

  5. Schmid, P.C., Johnson, S.B., and Schmid, H.H.O. (1991) Remodeling of Rat Hepatocyte Phospholipids by Selective Acyl Turnover, J. Biol. Chem. 66, 13690–13697.

    Google Scholar 

  6. Curstedt, T. (1974) Biosynthesis of Molecular Species of Phosphatidylcholines in Bile, Liver and Plasma of Rats Given [1,1-2H2]Ethanol, Biochim. Biophys. Acta 369, 196–208.

    PubMed  CAS  Google Scholar 

  7. Sundler, R., and Åkesson, B. (1975) Biosynthesis of Phosphatidylethanolamines and Phosphatidylcholines from Ethanolamine and Choline in Rat Liver, Biochem. J. 146, 309–315.

    PubMed  CAS  Google Scholar 

  8. Vance, J.E. (1988) Compartmentalization and Differential Labeling of Phospholipids of Rat Liver Subcellular Membranes, Biochim. Biophys. Acta 963, 10–20.

    PubMed  CAS  Google Scholar 

  9. Vance, J.E. (1991) Newly Made Phosphatidylserine and Phosphatidylethanolamine Are Preferentially Translocated Between Rat Liver Mitochondria and Endoplasmic Reticulum, J. Biol. Chem. 266, 89–97.

    PubMed  CAS  Google Scholar 

  10. Vance, J.E. (1988) Compartmentalization of Phospholipids for Lipoprotein Assembly on the Basis of Molecular Species and Biosynthetic Origin, Biochim. Biophys. Acta 963, 70–81.

    PubMed  CAS  Google Scholar 

  11. Vance, J.E., and Vance, D.E. (1986) Specific Pools of Phospholipids Are Used for Lipoprotein Secretion by Cultured Rat Hepatocytes, J. Biol. Chem. 261, 4486–4491.

    PubMed  CAS  Google Scholar 

  12. Yao, Z., and Vance, D.E. (1988) The Active Synthesis of Phosphatidylcholine Is Required for Very Low Density Lipoprotein Secretion from Rat Hepatocytes, J. Biol. Chem. 263, 2998–3004.

    PubMed  CAS  Google Scholar 

  13. Vance, J.E. (1989) The Use of Newly Synthesized Phospholipids for Assembly into Secreted Hepatic Lipoproteins, Biochim. Biophys. Acta 1006, 59–69.

    PubMed  CAS  Google Scholar 

  14. Schmid, P.C., Deli, E., and Schmid, H.H.O. (1995) Generation and Remodeling of Phospholipid Molecular Species in Rat Hepatocytes, Arch. Biochem. Biophys. 319, 168–176.

    Article  PubMed  CAS  Google Scholar 

  15. Schmid, P.C., Spimrova, I., and Schmid, H.H.O. (1995) Incorporation of Exogenous Fatty Acids into Molecular Species of Rat Hepatocyte Phospholipids, Arch. Biochem. Biophys. 322, 306–312.

    Article  PubMed  CAS  Google Scholar 

  16. Kennedy, E.P., and Weiss, S.B. (1956) The Function of Cytidine Coenzymes in the Biosynthesis of Phospholipids, J. Biol. Chem. 222, 193–214.

    PubMed  CAS  Google Scholar 

  17. Blank, M.L., Cress, E.A., Robinson, M., and Snyder, F. (1985) Metabolism of Unique Diarachidonoyl and Linoleoylarachidonoyl Species of Ethanolamine and Choline Phosphoglycerides in Rat Testes, Biochim. Biophys. Acta 833, 366–371.

    PubMed  CAS  Google Scholar 

  18. Robinson, M., Blank, M.L., and Snyder, F. (1986) Highly Unsaturated Phospholipid Molecular Species of Rat Erythrocyte Membranes: Selective Incorporation of Arachidonic Acid into Phosphoglycerides Containing Polyunsaturation in Both Acyl Chains, Arch. Biochem. Biophys. 250, 271–279.

    Article  PubMed  CAS  Google Scholar 

  19. Chilton, F.H., and Murphy, R.C. (1987) Stimulated Production and Natural Occurrence of 1,2-Diarachidonoyl Glycerophosphocholine in Human Neutrophils, Biochem. Biophys. Res. Commun. 145, 1126–1133.

    Article  PubMed  CAS  Google Scholar 

  20. Christie, W.W., and Moore, J.H. (1969) A Semimicro Method for the Stereospecific Analysis of Triglycerides, Biochim. Biophys. Acta 176, 445–452.

    PubMed  CAS  Google Scholar 

  21. Blank, M.L., Smith, Z.L., and Snyder, F. (1993) Arachidonate-Containing Triacylglycerols: Biosynthesis and a Lipolytic Mechanism for the Release and Transfer of Arachidonate to Phospholipids in HL-60 Cells, Biochim. Biophys. Acta 1170, 275–282.

    PubMed  CAS  Google Scholar 

  22. Krebs, H.A., Cornell, N.W., Lund, P., and Heins, R. (1974) Isolated Liver Cells as Experimental Material, in Regulation of Hepatic Metabolism (Lindquist, F., and Typestrup, N., eds.), pp. 726–750, Academic Press, New York.

    Google Scholar 

  23. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–507.

    PubMed  CAS  Google Scholar 

  24. Bartlett, G.R. (1959) Phosphorus Assay in Column Chromatography, J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  25. Sundler, R., Åkesson, B., and Nilsson, A. (1974) Effect of Different Fatty Acids on Glycerolipid Synthesis in Isolated Rat Hepatocytes, J. Biol. Chem. 249, 5102–5107.

    PubMed  CAS  Google Scholar 

  26. Chambaz, J., Guillouzo, A., Cardot, P., Pepin, D., and Bereziat, G. (1986) Essential Fatty Acid Uptake and Esterification in Primary Culture of Rat Hepatocytes, Biochim. Biophys. Acta 878, 310–319.

    PubMed  CAS  Google Scholar 

  27. Thomas, G., Loriette, C., Pepin, D., Chambaz, J., and Bereziat, G. (1988) Selective Channelling of Arachidonic and Linoleic Acid into Rat Hepatocytes in Primary Culture, Biochem. J. 256, 641–647.

    PubMed  CAS  Google Scholar 

  28. Tijburg, L.B.M., Samborski, R., and Vance, D.E. (1991) Evidence That Remodeling of the Fatty Acids of Phosphatidylcholine Is Regulated in Isolated Rat Hepatocytes and Involves Both the sn-1 and sn-2 Positions, Biochim. Biophys. Acta 1085, 184–190.

    PubMed  CAS  Google Scholar 

  29. Woldseth, B., and Christopherson, B.O. (1994) Biosynthesis of Phospholipid Molecular Species in Isolated Liver Cells Studied by Combining Fatty Acid Substrates Esterified in the sn-1 and sn-2 Positions, Biochim. Biophys. Acta 1213, 39–45.

    PubMed  CAS  Google Scholar 

  30. Samborski, R.W., Ridgway, N.D., and Vance, D.E. (1990) Evidence That Only Newly Made Phosphatidylethanolamine Is Methylated to Phosphatidylcholine and That Phosphatidylethanolamine Is Not Significantly Deacylated-Reacylated in Rat Hepatocytes, J. Biol. Chem. 265, 18322–18329.

    PubMed  CAS  Google Scholar 

  31. Samborski, R.W., Ridgway, N.D., and Vance, D.E. (1993) Metabolism of Molecular Species of Phosphatidylethanolamine and Phosphatidylcholine in Rat Hepatocytes During Prolonged Inhibition of Phosphatidylethanolamine N-Methyltransferase, J. Lipid Res. 34, 125–137.

    PubMed  CAS  Google Scholar 

  32. Kuwae, T., Schmid, P.C., and Schmid, H.H.O. (1997) Alterations of Fatty Acyl Turnover in Macrophage Glycerolipids Induced by Stimulation. Evidence for Enhanced Recycling of Arachidonic Acid, Biochim. Biophys. Acta 1344, 74–86.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Schmid, P.C., Spimrova, I. & Schmid, H.H.O. Generation and remodeling of highly polyunsaturated molecular species of rat hepatocyte phospholipids. Lipids 32, 1181–1187 (1997). https://doi.org/10.1007/s11745-997-0152-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0152-7

Keywords

Navigation