Skip to main content
Log in

Long-Chain Free Fatty Acids Influence Lipid Accumulation, Lysosome Activation and Glycolytic Shift in Various Cells In Vitro

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Hydrophobic molecules may be toxic when present in excess. When dissolved in membranes, hydrophobic molecules disrupt membrane function. Studies on the effects of free fatty acids (FFA) on cultured cells contradict each other. Here we describe the effects of FFA on various human cells in culture. The addition of long-chain FFA (oleic, palmitic, linoleic, linolenic, etc.) to cultured cells led to lipid accumulation in hepatocytes and muscle cells, initiation of autophagy, and uncoupling of oxidative phosphorylation. Although treated cells increase their oxygen consumption, metabolic shifts in favor of glycolysis were observed. All these effects were expressed to varying degrees in different cells and with the addition of different FFAs. The mechanisms of these FFA effects are discussed, as well their practical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yoon B.K., Jackman J.A., Valle-González E.R., Cho N.-J. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19, 1114. https://doi.org/10.3390/ijms19041114

    Article  CAS  PubMed Central  Google Scholar 

  2. Ruffell S.E., Müller K.M., McConkey B.J. 2016. Comparative assessment of microalgal fatty acids as topical antibiotics. J. Appl. Phycol. 28, 1695–1704.

    Article  CAS  Google Scholar 

  3. Desbois A.P., Smith. V.J. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642. https://doi.org/10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  4. Fischer C.L. 2020. Antimicrobial activity of host-derived lipids. Antibiotics. 9, 75.https://doi.org/10.3390/antibiotics/9020075

  5. Viktorova E.G., Nchoutmboube J.A., Ford-Siltz L.A., Iverson E., Belov G.A. 2018. Phospholipid synthesis fueled by lipid droplets drives the structural development of poliovirus replication organelles. PLoS Pathol. 14, e1007280. https://doi.org/10.1371/journal.ppat.1007280

    Article  CAS  Google Scholar 

  6. Carrasco S., Mérida I. 2006. Diacylglycerol, when simplicity becomes complex. Trends Biochem. Sci. 32, 27–36. https://doi.org/10.1016/j.tibs.11.004

    Article  PubMed  Google Scholar 

  7. Nakamura M.T., Yudel B.E., Loor J.J. 2014. Regulation of energy metabolism by long-chain fatty acids. Progress Lipid Res. 53, 124–144.

    Article  CAS  Google Scholar 

  8. Lancaster G.I., Langley K.G., Berglund N.A., Kammoun H.L., Reibe S., Estevez E., Weir J., Mellett N.A., Pernes G., Conway J.R.W., Lee M.K.S., Timpson P., Murphy A.J., Masters S.L., Gerondakis S., et al. 2018. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metabolism. 27, 1096–1110. https://doi.org/10.1016/j.cmet.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  9. Serhan C.N., Levy B.D. 2018. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669. https://doi.org/10.1172/JCI97943

    Article  PubMed  PubMed Central  Google Scholar 

  10. Plötz T., Krümmel B., Laporte A., Pingitore A., Persaud S.J., Jörns A., Elsner M., Mehmeti I., Lenzen S. 2017. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutrition Diabetes. 7, 305. https://doi.org/10.1038/s41387-017-0005-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tumova J., Malisova L., Andel M., Trnka J. 2015. Protective effect of unsaturated fatty acids on palmitic acid‑induced toxicity in skeletal muscle cells is not mediated by PPARδ activation. Lipids. 50, 955–964. https://doi.org/10.1007/s11745-015-4058-0

    Article  CAS  PubMed  Google Scholar 

  12. Patková J., Anděl M., Trnka J. 2014. Palmitate-induced cell death and mitochondrial respiratory dysfunction in myoblasts are not prevented by mitochondria-targeted antioxidants. Cell Physiol. Biochem. 33, 1439. https://doi.org/10.1159/000358709

    Article  CAS  PubMed  Google Scholar 

  13. Chouchani E.T., Kazak L., Jedrychowski M.P., Lu G.Z., Erickson B.K., Szpyt J., Pierce K.A., Laznik-Bogoslavski D., Vetrivelan R., Clish C.B., Robinson A.J., Gygi S.P., Spiegelman B.M. 2016. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 532, 112‒116.

    Article  CAS  Google Scholar 

  14. Yegorov Y.E. 2020. Healthy aging: Antioxidants, uncouplers and/or telomerase? Mol. Biol. (Moscow). 54 (3), 311–316. https://doi.org/10.1134/S002689332003005X

    Article  Google Scholar 

  15. Brooks G.A. 2020. Lactate as a fulcrum of metabolism. Redox Biol. 35, 101454.

    Article  CAS  Google Scholar 

  16. Rabinowitz J.D., Enerbäck S. 2020. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2, 566–571. https://doi.org/10.1038/s42255-020-0243-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flores A., Schell J., Krall A., Jelinek D., Miranda M., Grigorian M., Braas D., White A. C., Zhou J., Graham N., Graeber T., Seth P., Evseenko D., Coller H., Rutter J., Christofk H., Lowry W. 2017. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026. https://doi.org/10.1038/ncb3575

    Article  CAS  PubMed  Google Scholar 

  18. Miranda M., Christofk H., Jones D.L., Lowry W.E. 2018. Topical inhibition of the electron transport chain can stimulate the hair cycle. J. Invest. Dermatol. 138, 968e972. https://doi.org/10.1016/j.jid.2017.10.021

  19. Son M.J., Jeong J.K., Kwon Y., Ryu J.S, Mun S.J., Kim H.J., Kim S.W., Yoo S., Kook J., Lee H., Kim J., Chung K.S. 2018. A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming. Exper. Mol. Med. 50, 1–15. https://doi.org/10.1038/s12276-018-0185-z

    Article  CAS  Google Scholar 

  20. Yegorov E.E., Terekhov S.M., Vishnyakova Kh.S., Karachentsev D.N., Kazimirchuk E.V., Tsvetkova T.G., Veiko N.N., Smirnova T.D., Makarenkov A.S., El’darov M.A., Meshcheryakova Yu.A., Lyapunova N.A., Zelenin A.V. 2003. Telomerization as a method of obtaining immortal human cells preserving normal properties. Russ. J. Dev. Biol. 34 (3), 137–144.

    Article  Google Scholar 

  21. Thomé M.P., Filippi-Chiela E.C., Villodre E.S., Migliavaca C.B., Onzi G.R., Felipe K. B., Lenz G. 2016. Ratiometric analysis of acridine orange staining in the study of acidic organelles and autophagy. J. Cell Sci. 129, 4622–4632. https://doi.org/10.1242/jcs.195057

    Article  CAS  PubMed  Google Scholar 

  22. Vishnyakova Kh.S., Babizhaev M.A., Aliper A.M., Buzdin A.A., Kudryavtseva A.V., YYegorov E.E. 2014. Stimulation of cell proliferation by carnosine: Cell and transcriptome approaches. Mol. Biol. (Moscow). 48 (5), 718–726.

    Article  CAS  Google Scholar 

  23. Miwa H. 2002. High-performance liquid chromatographic determination of free fatty acids and esterified fatty acids in biological materials as their 2-nitrophenylhydrazides. Anal. Chim. Acta. 465, 237–255.

    Article  CAS  Google Scholar 

  24. Lunt S.Y., Heiden M.G.V. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237

    Article  CAS  PubMed  Google Scholar 

  25. DeBerardinis R.J., Chandel N.S. 2020. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129. https://doi.org/10.1038/s42255-020-0172-2

    Article  PubMed  Google Scholar 

  26. Axelrod C.L., King W.T., Davuluri G., Noland R.C., Hall J., Hull M., Dantas W.S., Zunica E.R., Alexopoulos S.J., Hoehn K.L., Langohr I., Stadler K., Doyle H., Schmidt E., Nieuwoudt S., et al. 2020. BAM15-mediated mitochondrial uncoupling protects against obesity and improves glycemic control. EMBO Mol. Med. 12, e12088. https://doi.org/10.15252/emmm.202012088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rousseta S., Mozoa J., Dujardinb G., EmreaY., Masscheleyna S., Ricquiera D., Cassard-Doulcier A.-M. 2007. UCP2 is a mitochondrial transporter with an unusual very short half-life. FEBS Lett. 581, 479–482.

    Article  Google Scholar 

  28. Sreedhar A., Zhao Y. 2017. Uncoupling protein 2 and metabolic diseases. Mitochondrion. 34, 135–140.

    Article  CAS  Google Scholar 

  29. Leamy A.K., Egnatchik R.A., Shiota M., Ivanova P.T., Myers D. S., Brown H.A., Young J.D. 2014. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J. Lipid Res. 55, 1478–1488.

    Article  CAS  Google Scholar 

  30. Nakamura S., Takamura T., Matsuzawa-Nagata N., Takayama H., Misu H., Noda H., Nabemoto S., Kurita S., Ota T., Ando H., Miyamoto K.-I., Kaneko S. 2009. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 284, 14809–14818.

    Article  CAS  Google Scholar 

  31. de Vries J.E., Vork M.M., Roemen T.H.M., de Jong Y.F., Cleutjens J.P.M., van der Vusse G.J., van Bilsen M. 1997. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J. Lipid Res. 38, 1384–1394.

    Article  CAS  Google Scholar 

  32. Coll T., Eyre E., Rodrıguez-Calvo R., Palomer X., Sanchez R.M., Merlos M., Laguna J.C., Vazquez-Carrera M. 2008. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J. Biol. Chem. 283, 11107–11116.

    Article  CAS  Google Scholar 

  33. Henique C., Mansouri A., Fumey G., Lenoir V., Girard J., Bouillaud F., Prip-Buus C., Cohen I. 2010. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J. Biol. Chem. 285, 36818–36827.

    Article  CAS  Google Scholar 

  34. Turpin S.M., Lancaster G.I., Darby I., Febbraio M.A., Watt M.J. 2006. Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am. J. Physiol. Endocrinol. Metab. 291, E1341–E1350. https://doi.org/10.1152/ajpendo.00095.2006

    Article  CAS  PubMed  Google Scholar 

  35. Eitel K., Staiger H., Brendel M.D., Brandhorst D., Bretzel R.G., Häring H.-U., Kellerer M. 2002. Different role of saturated and unsaturated fatty acids in beta-cell apoptosis. Biochem. Biophys. Res. Commun. 299, 853–856. https://doi.org/10.1016/s0006-291x(02)02752-3

    Article  CAS  PubMed  Google Scholar 

  36. Johnson E.S., Lindblom K.R., Robeson A., Stevens R.D., Ilkayeva O.R., Newgard C.B., Kornbluth S., Andersen J.L. 2013. Metabolomic profiling reveals a role for caspase-2 in lipoapoptosis. J. Biol. Chem. 288, 14463–14475. https://doi.org/10.1074/jbc.M112.437210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alnahdi A., John A., Raza H. 2019. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients. 11, 1979. https://doi.org/10.3390/nu11091979

    Article  CAS  PubMed Central  Google Scholar 

  38. Plötz T., Krümmel B., Laporte A., Pingitore A., Persaud S.J., Jörns A., Elsner M., Mehmeti I., Lenzen S. 2017. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutrition Diabetes. 7, 305. https://doi.org/10.1038/s41387-017-0005-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sreedhar A., Petruska P., Miriyala S., Panchatcharam M., Zhao Y. 2017. UCP2 overexpression enhanced glycolysis via activation of PFKFB2 during skin cell transformation. Oncotarget. 8, 95504–95515.

    Article  Google Scholar 

  40. Cunningham C.A., Hoppins S., Fink P.J. 2018. Cutting edge glycolytic metabolism and mitochondrial metabolism are uncoupled in antigen-activated CD8+ recent thymic emigrants. J. Immunol. 201, 1627–1632.

    Article  CAS  Google Scholar 

  41. Jing C., Castro-Dopico T., Richoz N., Tuong Z.K., Ferdinand J.R., Lok L.S.C., Loudon K.W., Banham G.D., Mathews R.J., Cader Z., Fitzpatrick S., Bashant K.R., Kaplan M.J., Kaser A., Johnson R.S., et al. 2020. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc. Natl. Acad. Sci. U. S. A. 117, 15160–15171.

    Article  CAS  Google Scholar 

  42. Leverve X., Batandier C., Fontaine E. 2007. Choosing the right substrate. Rev. Novartis Found. Symp. 280, 108–127.

  43. Halliwell B. 2003. Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett. 540, 3–6.

    Article  CAS  Google Scholar 

  44. Place T.L., Domann F.E., Case A.J. 2017. Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic and translational research. Free Rad. Biol. Med. 113, 311–322. https://doi.org/10.1016/j.freeradbiomed.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  45. Listenberger L.L. Han X.L., Lewis S.E., Cases S., Farese R.V., Ory D.S., Schaffer J.E. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. U. S. A. 100, 3077–3082.

    Article  CAS  Google Scholar 

  46. Murray A.J., Anderson R.E., Watson G.C., Radda G.K., Clarke K. 2004. Uncoupling proteins in human heart. Lancet. 364, 1786–1788.

    Article  CAS  Google Scholar 

  47. Cannon B., Nedergaard J. 2004. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 84, 277–359. https://doi.org/10.1152/physrev.00015.2003

    Article  CAS  PubMed  Google Scholar 

  48. Sreedhar A., Zhao Y. 2017. Uncoupling protein 2 and metabolic diseases. Mitochondrion. 34, 135–140. https://doi.org/10.1016/j.mito.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maassen J.A., Romijn J.A., Heine R.J. 2007. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: A new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus. Diabetologia. 50, 2036–2041. https://doi.org/10.1007/s00125-007-0776-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., Tanaka K., Cuervo A.M., Czaja M.J. 2009. Autophagy regulates lipid metabolism. Nature. 458, 1131–1137. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Onal G., Kutlu O., Gozuacik D., Emre S.D. 2017. Lipid droplets in health and disease. Lipids Health Dis. 16, 128. https://doi.org/10.1186/s12944-017-0521-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schüttera M., Graef M. 2020. Localized de novo phospholipid synthesis drives autophagosome biogenesis. Autophagy. 16, 770–771. https://doi.org/10.1080/15548627.2020.1725379

    Article  CAS  Google Scholar 

  53. Suzuki H., Hisamatsu T., Chiba S., Mori K., Kitazume M.T., Shimamura K., Nakamoto N., Matsuoka K., Ebinuma H., Naganuma M., Kana T. 2016. Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages. Immunol. Lett. 176, 18–27.

    Article  CAS  Google Scholar 

  54. Kelly B., O’Neill L.A.J. 2015. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784. https://doi.org/10.1038/cr.2015.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Viola A., Munari F., Sánchez-Rodríguez R., Scolaro T., Castegna A. 2019. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462. https://doi.org/10.3389/fimmu.2019.01462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu Q., Wang Y., Dong L., He Y., Liu R., Yang Q., Cao Y., Wang Y., Jia A., Bi Y. Liu G. 2020. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front. Cell. Infect. Microbiol. 10, 287. https://doi.org/10.3389/fcimb.2020.00287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Colegio O.R., Chu N.Q., Szabo A.L., Chu T., Rhebergen A.M., Jairam V., Cyrus N., Brokowski C.E., Eisenbarth S.C., Phillips G.M., Cline G.W., Phillips A.J., Medzhitov R. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513, 559–563. https://doi.org/10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Errea A., Cayet D., Marchetti P., Tang C., Kluza J., Offermanns S., Sirard J.C., Rumbo M. 2016. Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. PLoS One. 11, e0163694. https://doi.org/10.1371/journal.pone.0163694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoque R., Farooq A., Ghani A., Gorelick F., Mehal W.Z. 2014. Lactate reduces liver and pancreatic injury in Toll-like receptor and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 146, 1763–1774.

    Article  CAS  Google Scholar 

  60. Iraporda C., Romanin D.E., Bengoa A.A., Errea A.J., Cayet D., Foligne B., Sirard J.C., Garrote G.L., Abraham A.G., Rumbo M. 2016. Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model. Front. Immunol. 7, 651. https://doi.org/10.3389/fimmu.2016.00651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dietl K., Renner K., Dettmer K., Timischl B., Eberhart K., Dorn C., Hellerbrand C., Kastenberger M., Kunz-Schughart L.A., Oefner P.J., Andreesen R., Gottfried E., Kreutz M.P. 2010. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J. Immunol. 184, 1200–1209. https://doi.org/10.4049/jimmunol.0902584

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J., Muri J., Fitzgerald G., Gorski T., Gianni-Barrera R., Masschelein E., D’Hulst G., Gilardoni P., Turiel G., Fan Z., Wang T., Planque M., Carmeliet P., Pellerin L., Wolfrum C., et al. 2020. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metabolism. 31, 1136–1153. https://doi.org/10.1016/j.cmet.2020.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peng M., Yin N., Chhangawala S., Xu K., Leslie C.S., Li M.O. 2016. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 354, 481–484. https://doi.org/10.1126/science.aaf6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang D., Tang Z., Huang H., Zhou G., Cui C., Weng Y., Liu W., Kim S., Lee S., Perez-Neut M., Ding J., Czyz D., Hu R., Ye Z., He M., et al. 2019. Metabolic regulation of gene expression by histone lactylation. Nature. 574, 575–580.

    Article  CAS  Google Scholar 

  65. Izzo L.T., Wellen K.E. 2019. Lactate links metabolism to genes. Nature. 574, 492–493.

    Article  CAS  Google Scholar 

  66. Freigang S., Ampenberger F., Weiss A., Kanneganti T.D., Iwakura Y., Hersberger M., Kopf M. 2013. Fatty acid–induced mitochondrial uncoupling elicits inflammasome-independent IL-1a and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 14, 1045–1053. https://doi.org/10.1038/ni.2704

    Article  CAS  PubMed  Google Scholar 

  67. Oh Y.S., Bae G.D., Baek D.J., Park E.Y., Jun H.S. 2018. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front. Endocrinol. 9, 384. https://doi.org/10.3389/fendo.2018.00384

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 19-04-01071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. E. Yegorov.

Ethics declarations

The authors declare they have no conflict of interest. This study does not contain any research involving humans or animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnyakova, K.S., Popov, K.V., Pan, X. et al. Long-Chain Free Fatty Acids Influence Lipid Accumulation, Lysosome Activation and Glycolytic Shift in Various Cells In Vitro. Mol Biol 55, 624–636 (2021). https://doi.org/10.1134/S0026893321030146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321030146

Keywords:

Navigation