Skip to main content

Advertisement

Log in

The microcirculation as a diagnostic and therapeutic target in sepsis

  • EM - Review
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The microcirculation is defined as the smallest vessels where gas and nutrient exchange with tissues takes place. One of its primary functions is to ensure adequate oxygen delivery to meet the oxygen demands of tissue cells. Previous data from clinical and experimental studies and the recent development of new imaging modalities, such as Orthogonal Polarization Spectral videomicroscopy and Sidestream Dark Field imaging, have helped to identify the crucial role that microcirculation plays in sepsis. If not corrected, microcirculatory dysfunction can lead to respiratory distress in tissue cells and subsequent organ failure, even in the absence of global hemodynamic deficiency. In the present review, we will address past and recent developments regarding the role of the microcirculation as an important target in the pathogenesis of sepsis and its progression to multiple organ failure. Accordingly, we identify the microcirculation as an important diagnostic and therapeutic target for treatment in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lehr HA, Bittinger F, Kirkpatrick CJ (2000) Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol 190:373–386

    Article  PubMed  CAS  Google Scholar 

  2. Feezor RJ, Baker HV, Mindrinos M et al (2004) Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genom 19:247–254

    Article  CAS  Google Scholar 

  3. Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

  4. Fang X, Tang W, Sun S et al (2006) Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med 34(12 Suppl):S447–S453

    Article  PubMed  Google Scholar 

  5. Trzeciak S, Dellinger RP, Parrillo JE et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98 98.e1–2

    Article  PubMed  Google Scholar 

  6. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E (1993) Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 21:218–223

    Article  PubMed  CAS  Google Scholar 

  7. Leone M, Bourgoin A, Cambon S, Dubuc M, Albanese J, Martin C (2003) Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome. Crit Care Med 31:462–467

    Article  PubMed  CAS  Google Scholar 

  8. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  9. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  10. Sair M, Etherington PJ, Peter Winlove C, Evans TW (2001) Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 29:1343–1349

    Article  PubMed  CAS  Google Scholar 

  11. Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R (2000) Microvascular response in patients with cardiogenic shock. Crit Care Med 28:1290–1294

    Article  PubMed  CAS  Google Scholar 

  12. Verdant C, De Backer D (2005) How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care 11:240–244

    Article  PubMed  Google Scholar 

  13. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19

    Article  PubMed  Google Scholar 

  14. Lindert J, Werner J, Redlin M, Kuppe H, Habazettl H, Pries AR (2002) OPS imaging of human microcirculation: a short technical report. J Vasc Res 39:368–372

    Article  PubMed  CAS  Google Scholar 

  15. Marik PE (2001) Sublingual capnography: a clinical validation study. Chest 120:923–927

    Article  PubMed  CAS  Google Scholar 

  16. McCuskey RS, Urbaschek R, Urbaschek B (1996) The microcirculation during endotoxemia. Cardiovasc Res 32:752–763

    PubMed  CAS  Google Scholar 

  17. Boerma EC, van der Voort PH, Spronk PE, Ince C (2007) Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35:1055–1060

    Article  PubMed  Google Scholar 

  18. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  19. Bateman RM, Sharpe MD, Ellis CG (2003) Bench-to-bedside review: microvascular dysfunction in sepsis—hemodynamics, oxygen transport, and nitric oxide. Crit Care 7:359–373

    Article  PubMed  Google Scholar 

  20. Elbers PW, Ince C (2006) Mechanisms of critical illness—classifying microcirculatory flow abnormalities in distributive shock. Crit Care 10:221

    Article  PubMed  Google Scholar 

  21. De Backer D, Verdant C, Chierego M, Koch M, Gullo A, Vincent JL (2006) Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med 34:1918–1924

    Article  PubMed  CAS  Google Scholar 

  22. Hollenberg SM, Broussard M, Osman J, Parrillo JE (2000) Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86:774–778

    PubMed  CAS  Google Scholar 

  23. Spain DA, Wilson MA, Bar-Natan MF, Garrison RN (1994) Nitric oxide synthase inhibition aggravates intestinal microvascular vasoconstriction and hypoperfusion of bacteremia. J Trauma 36:720–725

    Article  PubMed  CAS  Google Scholar 

  24. Trzeciak S, Cinel I, Phillip Dellinger R et al (2008) Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med 15:399–413

    Article  PubMed  Google Scholar 

  25. Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  26. Gundersen Y, Corso CO, Leiderer R et al (1998) The nitric oxide donor sodium nitroprusside protects against hepatic microcirculatory dysfunction in early endotoxaemia. Intensive Care Med 24:1257–1263

    Article  PubMed  CAS  Google Scholar 

  27. Assadi A, Desebbe O, Kaminski C et al (2008) Effects of sodium nitroprusside on splanchnic microcirculation in a resuscitated porcine model of septic shock. Br J Anaesth 100:55–65

    Article  PubMed  CAS  Google Scholar 

  28. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360(9343):1395–1396

    Article  PubMed  Google Scholar 

  29. Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 28:1208–1217

    Article  PubMed  Google Scholar 

  30. De Backer D, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med 31:1659–1667

    Article  PubMed  CAS  Google Scholar 

  31. Lebuffe G, Levy B, Neviere R et al (2002) Dobutamine and gastric-to-arterial carbon dioxide gap in severe sepsis without shock. Intensive Care Med 28:265–271

    Article  PubMed  Google Scholar 

  32. Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  33. Abraham E, Laterre PF, Garg R et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353:1332–1341

    Article  PubMed  CAS  Google Scholar 

  34. Hoffmann JN, Vollmar B, Laschke MW et al (2004) Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 32:1011–1017

    Article  PubMed  Google Scholar 

  35. Iba T, Kidokoro A, Fukunaga M, Nagakari K, Shirahama A, Ida Y (2005) Activated protein C improves the visceral microcirculation by attenuating the leukocyte–endothelial interaction in a rat lipopolysaccharide model. Crit Care Med 33:368–372

    Article  PubMed  CAS  Google Scholar 

  36. Lehmann C, Meissner K, Knock A et al (2006) Activated protein C improves intestinal microcirculation in experimental endotoxaemia in the rat. Crit Care 10:R157

    Article  PubMed  Google Scholar 

  37. Hersch M, Madorin WS, Sibbald WJ, Martin CM (1998) Selective gut microcirculatory control (SGMC) in septic rats: a novel approach with a locally applied vasoactive drug. Shock 10:292–297

    Article  PubMed  CAS  Google Scholar 

  38. Langouche L, Vanhorebeek I, Vlasselaers D et al (2005) Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 115:2277–2286

    Article  PubMed  CAS  Google Scholar 

  39. McGown CC, Brookes ZL (2007) Beneficial effects of statins on the microcirculation during sepsis: the role of nitric oxide. Br J Anaesth 98:163–175

    Article  PubMed  CAS  Google Scholar 

  40. Krejci V, Hiltebrand LB, Erni D (2003) Sigurdsson GH: Endothelin receptor antagonist bosentan improves microcirculatory blood flow in splanchnic organs in septic shock. Crit Care Med 31:203–210

    Article  PubMed  CAS  Google Scholar 

  41. Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228

    Article  PubMed  Google Scholar 

  42. Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100:7996–8001

    Article  PubMed  CAS  Google Scholar 

  43. Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–7636

    Article  PubMed  CAS  Google Scholar 

  44. Shapiro NI, Yano K, Okada H et al (2007) A prospective, observational study of soluble Flt-1 and vascular endothelial growth factor in sepsis. Shock [publish ahead of print]

Download references

Acknowledgments

Dr. Shapiro is supported by grants from the National Heart Lung and Blood Institute (RO1HLO91757) and the National Institute of General Medical Sciences 1P50GM076659-01 (Shapiro). Dr. Trzeciak is supported by a grant from the National Institutes of Health/National Institutes of General Medical Sciences (K23GM83211).

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan I. Shapiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nencioni, A., Trzeciak, S. & Shapiro, N.I. The microcirculation as a diagnostic and therapeutic target in sepsis. Intern Emerg Med 4, 413–418 (2009). https://doi.org/10.1007/s11739-009-0297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-009-0297-5

Keywords

Navigation