Skip to main content

Advertisement

Log in

Salt tolerance screening of a newly developed wheat variety (AZRC-DK-84) in saline environment using halophytic grass (Cenchrus penisettiformis) as a test model

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salt tolerance screening of a newly developed wheat variety (AZRC-DK-84) was performed using a halophytic grass (Cenchrus penisettiformis) as a test model. It was evident from the data that the newly developed breeding line AZRC-DK-84 of wheat was found to be well adapted under salinity stress as compared to standard halophytic grass demonstrating better or equivalent physiological and photochemical performance such as relative water content (RWC %), performance index (PIABS), non-photochemical quenching (qN), chlorophyll content index (CCI), the maximum quantum yield of PSII (Fv/Fm) and K+ ion accumulation. However, thiobarbituric acid reactive substances (TBAR), hydrogen peroxide (H2O2) content, number, and size of inactive reaction centers (Fv/Fo), NPQ (non-photochemical quenching), and Na+ ion accumulations were decreased in wheat as compared to halophytic grass. Further, wheat hybrid expressed greater antioxidant enzymes activities at 125 and 200 mM NaCl than Cenchrus penisettiformis. However, ascorbate peroxidase (APX) activities increased in wheat and Cenchrus penisettiformis plants under salt stress. The cube (Block or Dice) model was designed to represent specific energy fluxes of Photosystem II to compare the photochemical efficiency of Cenchrus penisettiformis and wheat under a salt stress environment. After initial screening, it is concluded that the breeding line of wheat (AZRC-DK-84) can be a breakthrough in wheat production especially in salt-affected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajmal M, Qaiser M (2006) Halophytes of Pakistan: characteristics, distribution, and potential economic usages. Saline Ecosys 2:129–153

    Google Scholar 

  • Ashraf M (2003) Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plants Sci 165:69–75

    Article  CAS  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.) Environ. Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  • Baker RNR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Bio Sci 15:413–428

    Article  Google Scholar 

  • Ben Khaled L, Gomez AM, Ouarraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23:571–580

    Article  CAS  Google Scholar 

  • Borzouei A, Kafi M, Akbari-Ghogdi E, Mousavi-Shalmani MA (2012) Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of salt sensitive and salt-tolerant wheat cultivars. Chil J Agric Res 72:476–482

    Article  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Dhindsa RH, Plumb-Dhindsa R, Thorpe TA (1981) Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dongsansuk A, Lontom W, Wannapat S, Theerakulpisut P (2013) The performance of PSII efficiency and growth response to salt stress in three rice varieties differing in salt tolerance. Agri Sci J 44:639–647

    Google Scholar 

  • FAO (2009) FAO Expert Meeting, 24–26 June 2009, Rome on "How to Feed the World in 2050"

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Jones RGW, Bristol A (1990) Partial characterization of the trait for enhanced K+ -Na+ discrimination in the D-genome of wheat. Planta 180:590–597

    Article  CAS  PubMed  Google Scholar 

  • Greenway HH, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:49–190

    Article  Google Scholar 

  • Gu MF, Li N, Shao TY, Long XH, Brestic M, Shao HB, Li BJB (2016) Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environ 62:314–320

    Article  CAS  Google Scholar 

  • Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Plant Physiol 169:146–156

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  CAS  Google Scholar 

  • Jamil M, Rehman S, Rha ES (2007) Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea Capitata L.). Pak J Bot 39:753–760

    Google Scholar 

  • Kalaji HM, Govindjee BK, Koscielniak J, Zuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72. https://doi.org/10.1016/j.envexpbot.2010.10.009

    Article  CAS  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y

    Article  CAS  Google Scholar 

  • Khan D, Ahmad R, Ismail S (1989) Structure, composition and above ground standing phytomass of some grazable grass-dominated communities of Pakistan coast. Pak J Bot 21(1):88–105

    Google Scholar 

  • Khan MA, Qaiser M (2006) Halophytes of Pakistan: characteristics, distribution and potential economic usages. In: Sabkha ecosystems. Springer, Dordrecht, pp 129–153

    Chapter  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Anal 31 no. 17–18:2763–2774

  • Lehner A, Chopera DR, Peters SW, Keller F, Mundree SG, Thomson JA, Farrant JM (2008) Protection mechanisms in the resurrection plant Xerophyta viscosa: cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1–275 phosphate synthase. Funct Plant Biol 35:26–39

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Baker RNR (1986) Saline terrestrial environments. In: Baker NR, Long SP (eds) Photosynthesis in Contrasting Environments. Elsevier, New York, pp 63–102

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. J irrig drain div 103(2):115–134

    Article  Google Scholar 

  • Mane AV, Deshpande TV, Wagh VB, Karadge BA, Samant SJS (2011) A critical review on physiological changes associated with reference to salinity. Int J Environ Sci 6:1192–1216

    Google Scholar 

  • Manuchehri R, Salehi H (2014) Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. S Afr J Bot 92:83–88

    Article  CAS  Google Scholar 

  • Masoumi A, Kafi M, Khazaei H, Davari K (2010) Effect of drought stress on water status, elecrolyte leakage and enzymatic antioxidants of kochia (Kochia scoparia) under saline condition. Pak J Bot 42:3517–3524

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence––a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem 48(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Merah O (2001) Potential importance of water-status traits for durum wheat improvement under Mediterranean conditions. J Agric Sci 137:139–145

    Article  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Tren Plant Sci 11:15–19

    Article  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. https://doi.org/10.1093/jxb/erj100

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navarro A, Banon S, Olmos E, Sanchez-Blanco MJ (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci 172:473–480

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. (Crop Physiology & Metabolism). Crop Sci 44:806–811

    Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ornami EN, Hammes PS (2006) Ameliorative effects of calcium on growth and mineral uptake of salt-stressed amaranth. S Afr J Plant Soil 23:197–202

    Article  Google Scholar 

  • Patterson BD, Macrae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Ann Biochem 139:487–492

    Article  CAS  Google Scholar 

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environment–Plants–molecules. Kluwer, Dordrecht, pp 3–20

    Google Scholar 

  • Raven J (1985) Regulation of pH and generation of osmolarity in vascular plants––a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  PubMed  Google Scholar 

  • Santos J, Al-Azzawi M, Aronson J, Flowers TJ (2016) eHALOPH a database of salt-tolerant plants: helping put halophytes to work. Plant Cell Physiol 57:e10

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZS, Khan MA (2011) The role of enzyme amylase in two germinating seed morphs of Halopyrum mucronatum (L.) Stapf. in saline and non-saline environment. Acta Physiol Plant 33:1185–1197. https://doi.org/10.1007/s11738-010-0646-z

    Article  CAS  Google Scholar 

  • Siddiqui ZS, Cho JL, Park SH, Kwon TR, Ahn BO, Lee KS, Jeong MJ, Kim KW, Lee SK, Park SC (2014) Physiological mechanism of drought tolerance in transgenic rice plants expressing Capsicum annuum Methionine sulfoxide reductase B2 (CaMsrB2) gene. Acta Physiol Plant 36:1143–1153

    Article  CAS  Google Scholar 

  • Siddiqui ZS, Ali F, Uddin Z (2021) Sustainable effect of a symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti on nodulation and photosynthetic traits of four leguminous plants under low moisture stress environment. Lett Appl Microbiol. https://doi.org/10.1111/lam.13463

    Article  PubMed  Google Scholar 

  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. Bios Scientific Oxford, pp 217–243

    Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the Halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirbet A, Lazár D, Kromdijk J, Govindjee (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56(1):86–104

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee A (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys 1797:1313–1326

    Article  CAS  Google Scholar 

  • Sui N, Li M, Li K, Song J, Wang BS (2010) Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 48:623–629

    Article  CAS  Google Scholar 

  • Taffouo VD, Meguekam L, Amougou A, Ourry A (2010) Salt stress effect on germination, plant growth and accumulation of metabolites in five leguminous plants. J Agric Sci Technol USA 4:27–33

    Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35:425–437

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thioyapong P, Melkonian J, Wolf DW, Steffens JC (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167:693–703

    Article  CAS  Google Scholar 

  • Torrecillas A, Guillaume C, Alarcon JJ, Ruiz-Sanchez MC (1995) Water relations of two tomato species under water stress and recovery. Plant Sci 105:169–176

    Article  CAS  Google Scholar 

  • Turan MA, Turkmen N, Taban N (2007) Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants. J Agron 6:378–381

    Article  CAS  Google Scholar 

  • Umar M, Siddiqui ZS (2018) Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Bot Croat 77:36–44

    Article  CAS  Google Scholar 

  • Umar M, Uddin Z, Siddiqui ZS (2019) Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica 57:627–639. https://doi.org/10.32615/ps.2019.043

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Weng XY, Xu HX, Yang Y, Peng HH (2008) Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. Biol Plant 52:307–313

    Article  CAS  Google Scholar 

  • Yang F, Xiao X, Zhang S, Korpelainen H, Li C (2009) Salt stress responses in Populus cathayana Rehder. Plant Sci 176:669–677

    Article  CAS  Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Rus J Plant Physiol 55:782. https://doi.org/10.1134/S1021443708060071

    Article  CAS  Google Scholar 

  • Zhang T, Song J, Fan JL, Feng G (2015) Effects of saline waterlogging and dryness/moist alternations on seed germination of halophyte and xerophyte. Plant Spec Biol 30:231–236

    Article  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and water logging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu SQ, Chen MW, Ji BH, Jiao DM (2011) Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). J Exp Bot 62:4617–4625

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zamin Shaheed Siddiqui.

Additional information

Communicated by G. Klobus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, B., Umar, M., Azeem, M. et al. Salt tolerance screening of a newly developed wheat variety (AZRC-DK-84) in saline environment using halophytic grass (Cenchrus penisettiformis) as a test model. Acta Physiol Plant 44, 81 (2022). https://doi.org/10.1007/s11738-022-03421-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03421-7

Keywords

Navigation