Skip to main content
Log in

Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The water-water cycle which may be helpful for dissipating the excitation pressure over electron transport chain and minimizing the risk of photoinhibition and photodamage was investigated in rice after 10-d P-deficient treatment. Net photosynthetic rate decreased under P-deficiency, thus the absorption of photon energy exceeded the energy required for CO2 assimilation. A more sensitive response of effective quantum yield of photosystem 2 (ΦPS2) to O2 concentration was observed in plants that suffered P starvation, indicating that more electrons were transported to O2 in the P-deficient leaves. The electron transport rate through photosystem 2 (PS 2) (Jf) was stable, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (Jg/Jf) was significantly decreased accompanied by an increase in the alternative electron transport (Ja/Jf), indicating that a considerable electron amount had been transported to O2 during the water-water cycle in the P-deficient leaves. However, the fraction of electron transport to photorespiration (Jo/Jf) was also increased in the P-deficient leaves and it was less sensitive than that of water-water cycle. Therefore, water-water cycle could serve as an efficient electron sink. The higher non-photochemical fluorescence quenching (qN) in the P-deficient leaves depended on O2 concentration, suggesting that the water-water cycle might also contribute to non-radiative energy dissipation. Hence, the enhanced activity of the water-water cycle is important for protecting photosynthetic apparatus under P-deficiency in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

ci :

intercellular CO2 concentration

Chl:

chlorophyll

gs :

stomatal conductance

FM:

fresh mass

Ja :

the rate of alternative electron transport

Jf :

the electron transport rate through PS2

Jg :

the rate of electron transport required to maintain photosynthetic carbon reduction cycle (PCR) and photorespiratory carbon oxidation cycle (PCO)

Jo :

the rate of electron transport though photorespiration

MDA:

malonyldialdehyde

O ·−2 :

superoxide radical

PN :

net photosynthetic rate

PCO:

photorespiratory carbon oxidation cycle

PCR:

photosynthetic carbon reduction cycle

PPFD:

photosynthetic photon flux density

Pr:

protein

PS 2:

photosystem 2

qP :

photochemical quenching

qN :

non-photochemical quenching

SOD:

superoxide dismutase

TBA:

barbiturate

TCA:

trichloroacetic acid

ΦPS2 :

effective PS2 quantum yield

References

  • Abadia, J. Rao, I.M., Terry, N: Changes in leaf phosphate status have only small effects on the photochemical apparatus of sugar beet leaves.-Plant Sci. 50: 49–55, 1987.

    Article  CAS  Google Scholar 

  • Agarwal, S., Pandey, V.: Antioxidant enzyme responses to NaCl stress in Cassia angustifolia.-Biol. Plant. 48: 555–560, 2004.

    Article  CAS  Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons.-Annu. Rev. Plant Physiol.-Plant mol. Biol. 50: 601–639, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Biehler, K., Fock, H.: Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat.-Plant Physiol. 112: 265–272, 1996.

    PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, A., Farquar, G.D.: Effects of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light.-Planta 165: 397–406, 1985.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599–626, 1992.

    Article  CAS  Google Scholar 

  • Elstner, E.F., Heupel, A.: Inhibition of nitrite formation from hydroxylammonium-chloride simple assay for superoxide dismutase.-Anal. Biochem. 70: 616–620, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Epron, D., Godard, D., Cornic, G., Genty, B.: Limitation of net CO2 assimilation rate by internal resistance to CO2 tranfer in the leaves of two tree species (Fagus sylvation L. and Castanea sativa Mill).-Plant Cell Environ. 18: 43–51, 1995.

    Article  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Fredeen, A.L., Raab, T.K., Rao, I.M., Terry, N.:Effects of phosphorus nutrition on photosynthesis in Glycine max L. Merr.-Planta 181: 399–405, 1990.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta. 990: 87–92, 1989.

    CAS  Google Scholar 

  • Ghorbanli, M., Ebrahimzadeh, H., Sharifi, M.: Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean.-Biol. Plant. 48: 575–581, 2004.

    Article  CAS  Google Scholar 

  • Harley, P.C., Poreto, F., Marco, G.D., Sharkey, T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2.-Plant Physiol. 98: 1429–1436, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z.A., Jiang, D.A., Yang, Y., Sun, J.W., Jin, S.H.: Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants.-Photosynthetica 42: 357–364, 2004.

    Article  CAS  Google Scholar 

  • Jacob, J., Lawlor, D.W.: Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants.-J. exp. Bot. 42: 1003–1011, 1991.

    Article  CAS  Google Scholar 

  • Jacob, J., Lawlor, D.W.: Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1,5-bisphosphate carboxylase/oxygenase activity, and ribulose-1,5-bisphosphate pool size.-Plant Physiol. 98: 801–807, 1992.

    PubMed  CAS  Google Scholar 

  • Jacob, J., Lawlor, D.W.: In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves.-Plant Cell Environ. 16: 785–795, 1993.

    Article  CAS  Google Scholar 

  • Jiang, D.A., Rao, L.H., Peng, Z.Q.: [Some physiological effects of potassium on yield formation of rice.]-Acta Agr. Univ. Zhejiang 13: 441–444, 1987. [In Chinese.]

    Google Scholar 

  • Koca, H., Ozdemir, F., Turkan I.: Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii.-Biol. Plant. 50: 745–748, 2006.

    Article  CAS  Google Scholar 

  • Lauer, M.J., Pallardy, S.G., Belvins, D.G., Randall, D.D.: Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.).-Plant Physiol. 91: 848–854, 1989.

    PubMed  CAS  Google Scholar 

  • Lovelock, C.E., Winter, K.: Oxygen-dependent electron transport and protection from photoinhibition in leaves of tropical trees species.-Planta 198: 580–587, 1996.

    Article  CAS  Google Scholar 

  • Makino, A., Miyake, C., Yokota, A.: Physiological function of the water-water cycle (Mehler reaction) and the cyclic electron flow around PS1 in rice leaves.-Plant Cell Physiol. 43: 1017–1026, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Maleszewski, S., Clereszko, I., Skowroñska, A., Mieczejko, E., Kozłowska-Szerenos, B.: Changes induced by low oxgen concentration in photosynthetic and respiratory CO2 exchange in phosphate-deficient bean leaves.-Biol. Plant. 48: 401–405, 2004.

    Article  Google Scholar 

  • Mehler, A.H.: Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents.-Arch. Biochem. Biophys. 33: 65–77, 1951.

    Article  CAS  Google Scholar 

  • Milivojević, D.B., Nikolić, B.R., Drinić, G.: Effects of arsenic on phosphorus content in different organs and chlorophyll fluorescence in primary leaves of soybean.-Biol. Plant. 50: 149–151, 2006.

    Article  Google Scholar 

  • Miyake, C., Yokota, A.: Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis.-Plant Cell Physiol. 42: 508–515, 2000.

    Article  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Neubauer, C., Yamamoto, H.Y.: Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts.-Plant Physiol. 99: 1354–1361, 1992.

    PubMed  CAS  Google Scholar 

  • Niyogi, K.K.: Photoprotection revisited: genetic and molecular approaches.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 333–359, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi, K.K.: Safety valves for photosynthesis.-Curr. Opinion Plant Biol. 3: 455–460, 2000.

    Article  CAS  Google Scholar 

  • Pieters, A.J., Paul, M.J., Lawlor, D.W.: Low sink demand limits photosynthesis under Pi deficiency.-J. exp. Bot. 52: 1083–1091, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, I., Israel, D.W.: Carbohydrate accumulation and utilization in soybean plants in response to altered phosphorus nutrition.-Physiol. Plant. 90: 722–728, 1994.

    Article  CAS  Google Scholar 

  • Rahnama, H., Ebrahimzadeh, H.: The effect of NaCl on antioxidant enzyme activities in potato seedlings.-Biol. Plant. 49: 93–97, 2005.

    Article  CAS  Google Scholar 

  • Rao, I.M., Terry, N.: Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. I. Changes in growth, gas exchange and Calvin cycle enzymes.-Plant Physiol. 90: 814–819, 1989.

    PubMed  CAS  Google Scholar 

  • Schreiber, U., Neubauer, C.: O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence.-Photosynth. Res. 25: 279–293, 1990.

    Article  CAS  Google Scholar 

  • Starck, Z,, Niemyska, B., Bogdan, J., Akour Tawalbeh, R.N.: Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation.-Plant Soil 226: 99–106, 2000.

    Article  CAS  Google Scholar 

  • Von Caemmerer, S., Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.-Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Wang, H.W., Mi, H., Ye, J.Y., Deng, Y., Shen, Y.K.: Low concentrations of NaHSO3 increase cyclic photo-phosphorylation and photosynthesis in cyanobacterium Synechocystis PCC6803.-Photosynth. Res. 75: 151–159, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -Y. Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, X.Y., Xu, H.X., Yang, Y. et al. Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. Biol Plant 52, 307–313 (2008). https://doi.org/10.1007/s10535-008-0064-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0064-x

Additional key words

Navigation