Skip to main content

Advertisement

Log in

The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A basic helix–loop–helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis.

In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix–loop–helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase the content of valuable flavonoids and improve tolerance to abiotic stresses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Am:

Antirrhinum majus

At:

Arabidopsis thaliana

CHI:

Chalcone isomerase

DEL:

Basic helix–loop–helix (bHLH) transcription factor

DFR:

Dihydroflavonol reductase

GFP:

Green fluorescent protein

MDA:

Malondialdehyde

P5CS:

Pyrroline-5-carboxylate synthase

PAL:

Phenylalanine ammonia lyase

PEG:

Polyethylene glycol

POD:

Peroxidase

PTDS:

PCR-based two-step DNA synthesis

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

VC:

Control vector

WT:

Wild-type

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alia Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Ben-Amor M, Flores B, Latche A, Bouzayen M, Pech JC, Romojaro F (1999) Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons. Plant Cell Environ 22:1579–1586

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA, Bailey SJ, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N, Fu J, Wang SP, Li XH, Xiao JH, Xiong LZ (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Gao JJ, Zhang Z, Peng RH, Xiong AS, Xu J, Zhu B, Yao QH (2011a) Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep 38:205–211

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yu B, Yuan L, Zhai H, He SZ, Liu QC (2011b) Production of transgenic sweetpotato plants resistant to stem nematodes using oryzacystatin-I gene. Sci Hortic 128:408–414

    Article  CAS  Google Scholar 

  • Gao S, Yuan L, Zhai H, Liu CL, He SZ, Liu QC (2011c) Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell Tissue Organ 107:205–213

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhou W, Lu Z, Li H, Li H, Gao F (2015) Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweetpotato. Plant Mol Biol Rep 33:1451–1463

    Article  CAS  Google Scholar 

  • Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1–17

    Article  CAS  PubMed  Google Scholar 

  • Hayzer DJ, Leisinger T (1980) The gene-enzyme relationships of proline biosynthesis in Escherichia coli. J Gen Microbiol 118:287–293

    CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of ∆1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou DX, Fujii M, Terahara N, Yoshimoto M (2004) Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J Biomed Biotechnol 2004:321–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix–loop–helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  • Jiang X, Zhang C, Lü P, Jiang G, Liu X, Dai F, Gao J (2014) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnol J 12:38–48

    Article  CAS  PubMed  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of ∆1- pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann TS, Zankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma H, Huang H, Li D, Yao S (2013) Natural anthocyanins from phytoresources and their chemical researches. Nat Prod Res 27:456–469

    Article  CAS  PubMed  Google Scholar 

  • Lister CE, Lancaster J (1996) Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric 71:313–320

    Article  CAS  Google Scholar 

  • Liu DG, He SZ, Zhai H, Wang LJ, Zhao Y, Wang B, Li RJ, Liu QC (2014) Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tissue Organ 117:1–16

    Article  Google Scholar 

  • Liu DG, He SZ, Song XJ, Zhai H, Liu N, Zhang DD, Ren ZT, Liu QC (2015a) IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Organ 120:701–715

    Article  CAS  Google Scholar 

  • Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y (2015b) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  CAS  PubMed  Google Scholar 

  • Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luriea S, Fallika E, Handrosa A, Shapirab R (1997) The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit. Physiol Mol Plant 50:141–149

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray JR, Havcett WP (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol 97:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y (2013) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 8:e70665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Sun S, Luo S, Zhang J, Xiao X, Zhang L, Wang F, Liu S (2014) Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Rep 33:669–680

    Article  CAS  PubMed  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Wang GL, Fang HY (2002) Plant genetic engineering. Science Press, Beijing

    Google Scholar 

  • Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweetpotato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FB, Tong WJ, Zhu H, Kong WL, Peng RH, Liu QC, Yao QH (2015) A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta. doi:10.1007/s00425-015-2443-9

    Google Scholar 

  • Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, Yao QH (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ. doi:10.1007/s11240-016-0953-1

    Google Scholar 

  • Wong CC, Li HB, Cheng KW, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    Article  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR based two-step DNA synthesis method for long gene sequence. Nucleic Acids Res 32:e98

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Guan SK, Zhai H, He SZ, Liu QC (2009) Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L. Plant Cell Tissue Organ 99:83–89

    Article  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Wang FB, Si ZZ, Huo JX, Xing L, An YY, He SZ, Liu QC (2015) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnol J. doi:10.1111/pbi.12402

    Google Scholar 

  • Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen SX, Dai SJ (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 82:230–253

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Xie X, Lin H, Sui S, Shen R, Yang Z, Lu K, Li M, Liu YG (2015) Isolation and functional characterization of a phenylalanine ammonia-lyase gene (SsPAL1) from coleus (Solenostemon scutellarioides (L.) Codd). Molecules 20:16833–16851

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu CF, Liu A, Zou D, Chen XB (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Project Fund of the Shanghai Municipal Committee of Agriculture (zhongzi2013-8, zhongzi2014-2, gongzi2014 7-1-3), Agriculture science technology achievement transformation fund (143919N0300), National Natural Science Foundation (31071486, 31200212, 31200075, 31200076), Basic research in the field of science and technology project of Science and Technology Commission of Shanghai Municipality (14JC1403602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhong Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhu, H., Kong, W. et al. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis . Planta 244, 59–73 (2016). https://doi.org/10.1007/s00425-016-2489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2489-3

Keywords

Navigation