Skip to main content
Log in

Temporary immersion bioreactors (TIB) provide a versatile, cost-effective and reproducible in vitro analysis of the response of pineapple shoots to salinity and drought

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Effects of salinity (NaCl) and the carbon source mannitol (0–200 mM) on micropropagation of pineapple cv. MD2 were analyzed in temporary immersion bioreactors (TIBs). Shoot multiplication rate, shoot cluster fresh weight and levels of aldehydes, chlorophylls, carotenoids and phenolics were determined in the plant material. The content of soluble phenolics in the culture medium was also evaluated. NaCl or mannitol above concentrations of 50 mM decreased pineapple shoot multiplication and fresh weight significantly. Two hundred mM NaCl decreased multiplication rate by 71.5% and cluster fresh weight by 40.0%. NaCl increased 2.4 times the levels of other aldehydes; 1.4 times the soluble phenolics in shoots; and 1.4 times the phenolics excreted to the culture medium. On the other hand, mannitol decreased the multiplication rate and cluster fresh weight by about 60%. Mannitol increased the contents of chlorophyll b 1.4 times and soluble phenolics 2.1 times. Results indicated that pineapple cv. MD2 is more sensitive to NaCl than to mannitol. Multiplication rates indicate that a 50% reduction was obtained with 37.4 mM NaCl and 66.5 mM mannitol. These concentrations can be used to stress shoots during micropropagation in TIBs and screen for/detect somaclonal variants with an increased salinity or drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Abdelgadir E, Oka M, Fujiyama H (2005) Characteristics of nitrate uptake by plants under salinity. J Plant Nutr 28:33–46

    Article  CAS  Google Scholar 

  • AbdElgawad H, De Vos D, Zinta G, Domagalska MA, Beemster GT, Asard H (2015) Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. New Phytol 208:354–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adkins S, Kunanuvatchaidach R, Godwin I (1995) Somaclonal variation in rice-2 drought tolerance and other agronomic characters. Aust J Bot 43:201–209

    Article  Google Scholar 

  • Ali RM, Abbas HM (2003) Reponse of salt stress barley seedlings to phenylurea. Plant Soil Environ 49:158–162

    Google Scholar 

  • Anderson C, Kohorn B (2001) Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. J Plant Physiol 158:1215–1219

    Article  CAS  Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talon M, Gómez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul 46:153–160

    Article  CAS  Google Scholar 

  • Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster GTS (2015) Drought induces distinct growth response, protection and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396

    Article  PubMed  PubMed Central  Google Scholar 

  • Avramova V, Nagel KA, AbdElgawad H, Bustos D, DuPlessis M, Fiorani F, Beemster GT (2016) Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J Exp Bot 67:2453–2466

    Article  CAS  PubMed  Google Scholar 

  • Avramova V, AbdElgawad H, Vasileva I, Petrova AS, Holek A, Mariën J, Beemster GT (2017) High antioxidant activity facilitates maintenance of cell division in leaves of drought tolerant maize hybrids. Front Plant Sci 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Awasthi P, Gupta AP, Bedi YS, Vishwakarma RA, Gandhi SG (2016) Mannitol stress directs flavonoid metabolism toward synthesis of flavones via differential regulation of two cytochrome p450 monooxygenases in Coleus forskohlii. Front Plant Sci 7:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setose (Rosc.) Eichler. Can J Plant Sci 80:373–378

    Article  CAS  Google Scholar 

  • Baker N (1993) Light-use efficiency and photoinhibition of photosynthesis in plants under environmental stress. In: Smith J, Griffiths H (eds) Water deficits plant responses from cell to community. Bios Scientific Publisher, Oxford, pp 221–235

    Google Scholar 

  • Bartholomew DP, Coppens D’Eeckenbrugge G, Chen CC (2010) Pineapple. Hortscience 45:740–742

    Google Scholar 

  • Benhassaini H, Fetati A, Hocine AK, Belkhodja M (2012) Effect of salt stress on growth and accumulation of proline and soluble sugars on plantlets of Pistacia atlantica Desf. subsp. atlantica used as rootstocks. Biotechnol Agron Soc Environ 16:159–165

    CAS  Google Scholar 

  • Ben-Hayyim G, Kochba J (1982) Growth characteristics and stability of tolerance of citrus callus cells subjected to NaCl stress. Plant Sci Lett 27:87–94

    Article  CAS  Google Scholar 

  • Bettaieb I, Bourgou S, Hamrouni-Sellami I, Limam F, Marzouk B (2011) Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol Plant 33:1103–1111

    Article  CAS  Google Scholar 

  • Boestfleisch C, Papenbrock J (2017) Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum, Triglochin maritima and Halimione portulacoides as reaction to mild salt stress. PLoS One 12:e0176303. https://doi.org/10.1371/journal.pone.0176303

    Article  PubMed  PubMed Central  Google Scholar 

  • Boestfleisch C, Wagenseil NB, Buhmann AK, Seal CE, Wade EM, Muscolo A, Papenbrock J (2014) Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants 6:plu046. https://doi.org/10.1093/aobpla/plu046

    Article  PubMed  PubMed Central  Google Scholar 

  • Botella J, Fairbairn D (2005) Present and future potential of pineapple biotechnology. Acta Hortic 622:23–28

    Article  Google Scholar 

  • Brachet J, Cosson L (1986) Changes in the total alkaloid content of Datura innoxia Mill. subjected to salt stress. J Exp Bot 37:650–656

    Article  CAS  Google Scholar 

  • Carlier JD, Coppensd’Eeckenbrugge G, Leitão JM (2007) Pineapple. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 331–342

    Google Scholar 

  • Carloni E, Tommasino E, Colomba EL, Ribotta A, Quiroga M, Griffa S, Grunberg K (2017) In vitro selection and characterization of buffelgrass somaclones with different responses to water stress. Plant Cell Tissue Org Cult. https://doi.org/10.1007/s11240-017-1220-9:1-13

    Google Scholar 

  • Chao SK, Kim JE, Jong AP, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglycosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144

    Article  Google Scholar 

  • Dahri AM, Ikram-Ul-Haq BN, Tariq Y, Parveen N (2017) Morpho-biochemical aspects among albino to normal plants of sugarcane developed in its callus culture. J Glob Biosci 6:4763–4770

    Google Scholar 

  • Daquinta M, Benegas R (1997) Brief review of tissue culture of pineapple. Pineapple Newsl 3:7–9

    Google Scholar 

  • Delgado-Paredes GE, Rojas-Idrogo C, Chanamé-Céspedes J, Floh EI, Handro W (2017) Development and agronomic evaluation of in vitro somaclonal variation in sweet potato regenerated plants from direct organogenesis of roots. Asian J Plant Sci Res 7:39–48

    Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012a) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Phys Biochem 54:34–42

    Article  Google Scholar 

  • Díaz-López L, Gimeno V, Simón I, Martínez V, Rodríguez-Ortega W, García-Sánchez F (2012b) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agric Water Manag 105:48–56

    Article  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalona M, Lorenzo JC, González B, Daquinta M, Borroto C, González JL, Desjardines Y (1999) Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748

    Article  CAS  Google Scholar 

  • Espinosa P, Lorenzo JC, Iglesias A, Yabor L, Menéndez E, Borroto J, Hernández L, Arencibia A (2002) Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep 21:136–140

    Article  CAS  Google Scholar 

  • FAOSTAT (2016) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567

  • Fatima S, Mujib A, Tonk D (2015) NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signalling as evidenced by antioxidant enzymes activities. Plant Cell Tissue Org Cult 121:445–458

    Article  CAS  Google Scholar 

  • Gadakh S, Patel D, Singh D (2017) Use of RAPD markers to characterize salt and drought lines of sugarcane. Int J Adv Res Biol Sci 4:50–57

    Article  Google Scholar 

  • Galle A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810

    Article  CAS  PubMed  Google Scholar 

  • Gindaba J, Rozanov A, Negash L (2004) Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. For Ecol Manag 201:119–129

    Article  Google Scholar 

  • Grace S (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168

    Google Scholar 

  • Gupta P, Sharma S, Saxena S (2015) Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176:863–874

    Article  CAS  PubMed  Google Scholar 

  • Gurmani AR, Bano A, Saleem M (2007) Effect of ABA and BA on growth and ion accumulation of wheat under salinity stress. Pak J Bot 39:141–149

    Google Scholar 

  • Gurr S, McPherson J, Bowles D (1992) Lignin and associated phenolic acids in cell walls. In: Wilkinson DL (ed) Molecular plant pathology. Oxford Press, Oxford, pp 51–56

    Google Scholar 

  • Haghighi Z, Modarresi M, Mollayi S (2012) Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk. by salinity stress. J Med Plants Res 6:3495–3500

    CAS  Google Scholar 

  • Hairuddin R, Yamin M, Hama S (2017) Application methods for conventional and modern development of onion (Allium cepa L.) in abiotic stresses. In: Junaid R (ed) Proceeding international conference on natural and social science, ICONSS. Palopo Cokroaminoto University, Makassar, pp B8-51–B8-57

    Google Scholar 

  • Hao L, Liang H, Wang Z, Liu X (1999) Effects of water stress and rewatering on turnover and gene expression of photosystem II reaction center polypeptide D1 in Zea mays. Aust J Plant Physiol 26:375–378

    Article  CAS  Google Scholar 

  • Heath R, Packer J (1968) Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Helaly MN, El-Hosieny HA, El-Sarkassy NM, Fuller MP (2017) Growth, lipid peroxidation, organic solutes, and anti-oxidative enzyme content in drought-stressed date palm embryogenic callus suspension induced by polyethylene glycol. In Vitro Cell Dev Biol Plant 53:133–141

    Article  CAS  Google Scholar 

  • Hernández L, Loyola-González O, Valle B, Martínez J, Díaz-López L, Aragón C, Vicente O, Papenbrock J, Trethowan R, Yabor L, Lorenzo JC (2015) Identification of discriminant factors after exposure of maize and common bean plantlets to abiotic stresses. Not Bot Hortic Agrobo Cluj-Nap 43:589–598

    Google Scholar 

  • Hoagland RE (1990) Alternaria cassiae alters phenylpropanoid metabolism in Sicklepod (Cassia obtusifolia). J Phytopathol 130:177–187

    Article  CAS  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Ann Rev Plant Biol 57:55–77

    Article  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  PubMed  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy B, De Filippis L (1999) Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. J Plant Physiol 155:746–754

    Article  CAS  Google Scholar 

  • Krishnamurthy R, Bhagwat K (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochem Biophys Acta 1412:1–28

    PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Loison-Cabot C, Lacoeuilhe J-J (1989) A genetic hybridization programme for improving pineapple quality. In: International symposium on the culture of subtropical and tropical fruits and crops, pp 395–400

  • Lorenzo JC, Yabor L, Medina N, Quintana N, Wells V (2015) Coefficient of variation can identify the most important effects of experimental treatments. Not Bot Horti Agrobo Cluj-Nap. https://doi.org/10.15835/nbha4319881.43:287-291

    Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (2001) Somaclonal variation in rice after two successive cycles of mature embryo derived callus culture in the presence of NaCl. Biol Plant 44:489–495

    Article  Google Scholar 

  • Martín EC, Arana A, González JJR, Encina CL (2015) Piña tropical (Ananas comosus L.): origen, distribución e importancia. Variedades y germoplasma. Agríc Verg: Frut Horticult Floricult 34:249–252

    Google Scholar 

  • Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163:11–18

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 5:473–497

    Article  Google Scholar 

  • Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors—role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Al-Hassa, pp 247–277. https://doi.org/10.5772/61442

  • Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  CAS  PubMed  Google Scholar 

  • Rivelli A, De Maria S, Pizza S, Gherbina P (2012) Growth and physiological response of hydroponically grown sunflower as affected by salinity and magnesium levels. J Plant Nutr 33:1307–1323

    Article  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology (in Spanish). Wadsworth Publishing, Belmont

    Google Scholar 

  • Sarmah D, Sutradhar M, Singh BK (2017) Somaclonal variation and its’ application in ornamentals plants. Int J Pure App Biosci 5:396–406

    Article  Google Scholar 

  • Schachtman D, Goodger J (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Selmar D, Kleinwächter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crops Prod 42:558–566

    Article  CAS  Google Scholar 

  • Shafi M, Bakht J, Khan M, Khan M, Raziuddin M (2011) Role of abscisic acid and proline in salinity tolerance of wheat genotypes. Pak J Bot 43:1111–1118

    CAS  Google Scholar 

  • Silva E, Ferreira-Silva S, Viegas R, Silveira J (2010) The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environ Exp Bot 69:279–285

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Sripaoraya S, Keawsompong S, Insupa P, Power JB, Davey MR, Srinives P (2006) Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed 125:411–413

    Article  CAS  Google Scholar 

  • Thioyapong P, Melkonian J, Wolf D, Steffens J (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167:693–703

    Article  Google Scholar 

  • Van der Poel B, Ceusters J, De Proft M (2009) Determination of pineapple (Ananas comosus, MD-2 hybrid cultivar) plant maturity, the efficiency of flowering induction agents and the use of activated carbon. Sci Hortic 120:58–63

    Article  Google Scholar 

  • West G, Inze D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Yabor L, Valle B, Rodríguez RC, Aragón C, Papenbrock J, Tebbe CC, Lorenzo JC (2016) The third vegetative generation of a field-grown transgenic pineapple clone shows minor side effects of transformation on plant physiological parameters. Plant Cell Tissue Org Cult. https://doi.org/10.1007/s11240-016-0950-4

    Google Scholar 

  • Yapo ES, Kouakou HT, Kouakou LK, Kouadio JY, Kouamé P, Mérillon JM (2011) Phenolic profiles of pineapple fruits (Ananas comosus L. Merrill). Influence of the origin of suckers. Aust J Basic Appl Sci 5:1372–1378

    CAS  Google Scholar 

  • Zaher-Ara T, Boroomand N, Sadat-Hosseini M (2016) Physiological and morphological response to drought stress in seedlings of ten citrus. Trees 30:985–993

    Article  CAS  Google Scholar 

  • Zaker A, Sykora C, Gössnitzer F, Abrishamchi P, Asili J, Mousavi SH, Wawrosch C (2015) Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Ind Crops Prod 67:97–102

    Article  CAS  Google Scholar 

  • Zhao G, Ma B, Ren C (2007) Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci 47:123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bioplant Center (University of Ciego de Avila, Cuba), the Laboratory for Integrated Plant Physiology Research (IMPRES) (University of Antwerp, Belgium) and the Thünen Institute of Biodiversity (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Lorenzo.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interests.

Human and animal rights

This research did not involve experiments with human or animal participants.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Communicated by J. Van.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, D., Hernández, L., Valle, B. et al. Temporary immersion bioreactors (TIB) provide a versatile, cost-effective and reproducible in vitro analysis of the response of pineapple shoots to salinity and drought. Acta Physiol Plant 39, 277 (2017). https://doi.org/10.1007/s11738-017-2576-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2576-5

Keywords

Navigation