Skip to main content
Log in

Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salvia officinalis L. is a medicinal plant containing several compounds with important pharmacological activity. In this study, we investigated the effects of water deficit (moderate and severe water deficits) on the contents of total and individual polyphenols of the aerial parts. Also, we studied the effect of drought on the antioxidant activity of methanolic extracts. Our results showed that water deficiency, as estimated by the decrease in water potential, resulted in a reduction of the biomass, plant height and total chlorophyll contents. In general, drought increased the level of total and individual polyphenols and this increase was more pronounced under moderate water deficit. These findings suggest that S. Officinalis is a sensitive species and that a severe water deficit could result in a decline in the activity of enzymes involved in the biosynthesis of phenolic compounds. On the other hand, our results showed an enhancement of reducing power and the radical scavenging activity as assessed using the DPPH assay with increasing stress severity. Finally, the evaluation of the chelating capacity of the extracts was found to be altered significantly under severe treatment by 39.71%. Based on these results, it seems that drought tolerance of S. officinalis is related to the capacity of the plant to modulate its phenolics in order to face to oxidative stress caused by water limiting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

C:

Control

MWD:

Moderate water deficit

SWD:

Severe water deficit

FC:

Field capacity

BHT:

Butylhydroxytoluene

HCl:

Chloridric acid

IC50:

The half maximal inhibitory concentration

EC50:

The half maximal effective concentration

ROS:

Reactive oxygen species

DW:

Dry weight

FW:

Fresh weight

DPPH:

2,2′-Diphenyl-1-picrylhydrazyl

GAE:

Gallic acid equivalent

K3Fe:

(CN)6 Potassium ferricyanide

References

  • Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248

    Article  Google Scholar 

  • Ali RM, Abbas HM (2003) Reponse of salt stress barley seedlings to phenylurea. Plant Soil Environ 49:158–162

    Google Scholar 

  • Arnon D (1949) Copper enzymes isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setose (Rosc.) Eichler. Can J Plant Sci 80:373–378

    Article  CAS  Google Scholar 

  • Bettaieb I, Zakhama N, Aidi Wannes W, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hort 120:271–275

    Article  CAS  Google Scholar 

  • Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763

    Article  CAS  Google Scholar 

  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bouyoucos (1983) Les propriétés physiques du sol de′pendent de sa texture et de sa structure, Les Bases de la Production Végétale, tome 1, Collection sciences et techniques agricoles, Bressuire, pp 67–87

  • Briekson C, Dömling HJ (1969) Carnosic acid as an antioxidant in rosemary and sage leaves. Z Lebensm Unters Forsch 141:10–16

    Google Scholar 

  • Bruneton J (1999) (Ed.), Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd edn. Lavoisier Publishing, Paris, pp 540–544

  • Camacho-Cristobal JJ, Lunar L, Lafont F, Baumert A, Gonzalez-Fontes A (2004) Boron deficiency causes accumulation of chlorogenic acid and caffeol polyamine conjugates in tobacco leaves. J Plant Physiol 161:879–881

    Article  PubMed  CAS  Google Scholar 

  • Chipault JR, Mizuno GR, Lundberg WO (1956) The antioxidant properties of spices in foods. Food Technol 10:209–211

    CAS  Google Scholar 

  • Collakova E, Dellapenna D (2003) The role of homogentisate phytyltransferase and other tochopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940

    Article  PubMed  CAS  Google Scholar 

  • Cuvelier ME, Richard H, Berset C (1996) Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. JAOCS 73:645–652

    Article  CAS  Google Scholar 

  • Dapkevicius A, Venskutonis R, Van Beek TA, Linssen JPH (1998) Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J Sci Food Agric 77:140–146

    Article  CAS  Google Scholar 

  • del Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, del Rio JA, Ortuno A, Quirin KW, Gerard D (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J Agric Food Chem 51:4247–4253

    Article  PubMed  CAS  Google Scholar 

  • Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9:289–300

    Article  Google Scholar 

  • Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Giorgi A, Mingozzi M, Madeo M, Speranza G, Cocucci M (2009) Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb). Food Chem 14:204–211

    Article  Google Scholar 

  • Gitz DC, Lui-Gitz L, McClure JW, Huerta AJ (2004) Effects of PAL inhibitor on phenol accumulation and UV-B tolerance in Spirodela intermedia (Koch.). J Exp Bot 55:919–927

    Article  PubMed  CAS  Google Scholar 

  • Grace S (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168

    Chapter  Google Scholar 

  • Hanato H, Kagawa T, Yasuhara T (1988) Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097

    Google Scholar 

  • Hermann K (1981) The antioxidative action of spices. Dtsch Lebensmitt Rundsch 77:134–139

    Google Scholar 

  • Hernandez I, Alegre L, Munne-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular-weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    PubMed  CAS  Google Scholar 

  • Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. J Agric Food Chem 48:3170–3176

    Article  PubMed  CAS  Google Scholar 

  • Huang YC, Chang YH, Shao YY (2006) Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem 98:529–538

    Article  CAS  Google Scholar 

  • Hura T, Hura K, Grzesiak S (2008) Contents of total phenolics and ferulic acid, and PAL activity during water potential changes in leaves of maize single-cross hybrids of different drought tolerance. J Agron Crop Sci 194:104–112

    Article  CAS  Google Scholar 

  • Kacperska A (1993) Water potential alteration—a prerequisite or a triggering stimulus for the development of freezing tolerance in overwintering herbaceous plants. In: Li PH, Christerson L (eds) Advances in plant cold hardiness. CRC Press, Boca Raton, pp 73–91

    Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieuu A (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    Article  Google Scholar 

  • Kim HJ, Chen F, Wang X, Choi JH (2006) Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J Agric Food Chem 54:7263–7269

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Fonseca JM, Choi JH, Kubota C, Kwon DY (2008) Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 56:3772–3776

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    Article  PubMed  CAS  Google Scholar 

  • Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L. Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831

    Article  CAS  Google Scholar 

  • Landry LG, Chappel CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced UVB injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Leyva A, Jarrillo JA, Salinas JM, Martınez-Zapater M (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in light-dependent manner. Plant Physiol 108:39–46

    PubMed  CAS  Google Scholar 

  • Li L, Staden JV (1988) Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. J Plant Growth Regul 24:55–66

    Google Scholar 

  • Li J, Ou-Lee T, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Article  PubMed  CAS  Google Scholar 

  • Lin KH, Chao PY, Yang CM, Cheng WC, Lo HF, Chang TR (2006) The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Bot Stud 47:417–426

    CAS  Google Scholar 

  • Lu Y, Foo LY (1999) Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51:91–94

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY (2000) Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 55:263–267

    Article  PubMed  Google Scholar 

  • Madsen HL, Bertelsen G (1995) Spices as antioxidants. Trends Food Sci Technol 6:271–277

    Article  CAS  Google Scholar 

  • Meot-Duros L, Magné C (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem 47:37–41

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Penuelas J (2003) Photo and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Mueller M, Schwarz K, Alegre L (2001) Diterpenes and antioxidative protection in drought stressed Salvia officinalis plants. J Plant Physiol 158:1431–1437

    Article  Google Scholar 

  • Namiki M (1990) Antioxidants/antimutagens in foods. Crit Rev Food Sci Nutr 29:273–300

    Article  PubMed  CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317

    Article  PubMed  Google Scholar 

  • Nogués S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    Article  PubMed  Google Scholar 

  • Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191

    Article  PubMed  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn J Nutr 44:307–315

    CAS  Google Scholar 

  • Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller JN, Paganga G (1996) Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Scarascia-Mugnozza G, De Angelis P, Matteucci G, Valentini R (1996) Long term exposure to elevated [CO2] in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant Cell Environ 19:643–654

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Sgherri C, Stevanovic B, Navari-Izzo F (2004) Role of phenolic acid during dehydration and rehydration of Ramonda serbica. Physiol Plant 122:478–485

    Article  CAS  Google Scholar 

  • Smirnof FN (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  • Velioglu YS, Massa G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Viera HJ, Bergamaschi H, Angelocci LR, Libardi PL (1991) Performance of two bean cultivars under two water availability regimes. II. Stomatal resistance to vapour diffusion, transpiration flux density and water potential in the plant (in Portuguese). Pesq Agropec Bras 9:1035–1045

    Google Scholar 

  • Yaginuma S, Shiraishi T, Ohya H, Igarashi K (2002) Polyphenol increases in safflower and cucumber seedlings exposed to strong visible light with limited water. Biosci Biotechnol Biochem 66:65–72

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Dong J, Lu J, Chen J, Li Y, Shan Y, Fan W, Gu G (2006) Effect of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in Barley (Hordeum vulgare L.). J Agric Food Chem 54:277–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iness Bettaieb.

Additional information

Communicated by R. Aroca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettaieb, I., Hamrouni-Sellami, I., Bourgou, S. et al. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L.. Acta Physiol Plant 33, 1103–1111 (2011). https://doi.org/10.1007/s11738-010-0638-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0638-z

Keywords

Navigation