Skip to main content
Log in

Genetic variability in Erianthus arundinaceus accessions native to Japan based on nuclear DNA content and simple sequence repeat markers

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Erianthus arundinaceus, part of the Saccharum complex, is increasingly important as a bioenergy crop and a potential resource for sugarcane improvement. Germplasm is widely distributed in the tropical zone in Southeast Asia and southern China, and has been found in the subtropical and temperate zones in Japan. Here, we investigated the 2C DNA content and simple sequence repeat (SSR) polymorphisms in E. arundinaceus accessions native to Japan. To estimate DNA content, flow cytometric analysis was performed on accessions collected from three climatic zones (temperate, subtropical, and tropical) in Japan and Indonesia. DNA content ranged from 7.42 to 8.10 pg (mean 7.62 pg), and all examined accessions fell into two groups reflecting collection location: the temperate zone in Japan (mean 8.06 pg) and the subtropical and tropical zones in Japan and Indonesia (mean 7.56 pg). Although DNA content differed significantly between the accessions from temperate and tropical/subtropical zones, chromosome number was inferred to be identical in all accessions. A phylogenetic tree of 42 accessions in the Saccharum complex based on detected fragments from 31 SSR primer pairs classified Erianthus and related genera into well-defined distinct groups. Thus, both 2C DNA content and phylogenetic analysis subdivided the E. arundinaceus accessions into two groups, suggesting that some of the Japanese accessions had different genetic characteristics from other accessions from Japan and Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41. doi:10.1007/s10722-004-0581-1

    Article  Google Scholar 

  • Ando S, Sugiura M, Yamada T, Katsuta M, Ishikawa S, Terajima Y, Sugimoto A, Matsuoka M (2011) Overwintering ability and dry matter production of sugarcane hybrids and relatives in the Kanto region of Japan. JARQ 45:259–267. doi:10.6090/jarq.45.259

    Article  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909. doi:10.1006/anbo.2000.1253

    Article  CAS  Google Scholar 

  • Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier press, Amsterdam, pp 143–210

    Chapter  Google Scholar 

  • Besse P, Mcintyre CL, Berding N (1996) Ribosomal DNA variation in Erianthus, a wild sugarcane relative (Andropogoneae-Saccharinae). Theor Appl Genet 92:733–743. doi:10.1007/BF00226096

    Article  CAS  PubMed  Google Scholar 

  • Besse P, McIntyre CL, Berding N (1997) Characterisation of Erianthus sect Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica 93:283–292. doi:10.1023/A:1002940701171

    Article  CAS  Google Scholar 

  • Cai Q, Aitken KS, Fan YH, Piperidis G, Liu XL, McIntyre CL, Huang XQ, Jackson P (2012) Assessment of the genetic diversity in a collection of Erianthus arundinaceus. Genet Resour Crop Evol 59:1483–1491. doi:10.1007/s10722-011-9776-4

    Article  Google Scholar 

  • Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES (2010) Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome 3:130–141. doi:10.3835/plantgenome2010.04.0010

    Article  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. doi:10.1093/aob/mci005

    Article  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Greihuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocol 2:2233–2244. doi:10.1038/nprot.2007.310

    Article  Google Scholar 

  • Ebina M, Tsuruta S, Kobayashi M, Terajima Y, Irei S (2016) A development of SSR linkage map of Erianthus, wild relatives of Saccharum, for breeding improvement of sugar cane. Abstract of Plant & Animal Genome Conference XXIV. https://pag.confex.com/pag/xxiv/webprogram/Paper19596.html. Accessed 30 Jan 2016

  • Fukuhara S, Terajima Y, Irei S, Sakaigaichi T, Ujihara K, Sugimoto A, Matsuoka M (2013) Identification and characterization of intergeneric hybrid of commercial sugarcane (Saccharum spp. hybrid) and Erianthus arundinaceus (Retz.). Euphytica 189:321–327. doi:10.1007/s10681-012-0748-3

    Article  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810. doi:10.1126/science.1137013

    Article  CAS  PubMed  Google Scholar 

  • Goldman JJ (2015) DNA contents in Texas bluegrass (Poa arachnifera) selected in Texas and Oklahoma determined by flow cytometry. Genet Resour Crop Evol 62:643–647. doi:10.1007/s10722-015-0247-1

    Article  CAS  Google Scholar 

  • Hampl V, Pavlícek A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program Freetree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735. doi:10.1099/00207713-51-3-731

    Article  CAS  PubMed  Google Scholar 

  • Irei S, Fukuhara S, Terajima Y, Sakaigaichi T, Matsuoka M, Sugimoto A (2008) Exploration and collection of sugarcane wild species (Erianthus spp.) in Okinawa island. Ann Rep Explor Introd Plant Genet Resour 24:47–53 (Japanese with English summary)

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270. doi:10.5169/seals-268384

    Google Scholar 

  • Jackson P, Henry RJ (2011) Erianthus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: industrial crops. Springer, Berlin, pp 97–107. doi:10.1007/978-3-642-21102-7_5

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106. doi:10.1038/ng1063

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Wang X, Lee T-H, Jakob K, Lee G-J, Paterson AH (2014) Comparative analysis of Miscanthus and Saccharum reveals a shared whole-genome duplication but different evolutionary fates. Plant Cell 26:2420–2429. doi:10.1105/tpc.114.125583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M (2009) Outline of biomass gasification methanol synthesis and vision of perennial grasses for biomass feedstock. Jpn J Grassl Sci 55:284–287 (In Japanese)

    CAS  Google Scholar 

  • Lee DJ, Berding N, Jackes BR, Bielig M (1998) Isozyme markers in Saccharum spp. hybrids and Erianthus arundinaceus (Retz) Jeswiet. Aust J Agric Res 49:915–921

    Article  CAS  Google Scholar 

  • Leitch IJ, Bennet MD (2004) Genome downsizing in polyploid plants. Biol J 82:651–663. doi:10.1111/j.1095-8312.2004.00349.x

    Google Scholar 

  • Lowrance R, Anderson W, Miguez F, Strickland T, Knoll J, Sauer T (2010) Landscape management and sustainable feedstock production: enhancing net regional primary production while minimizing externalities. In: Braun R, Karlen D, Johnson D (eds) Sustainable feedstocks for advanced biofuels, Chapter 1. Soil and Water Conservation Society, Los Angeles, pp 1–19

    Google Scholar 

  • Lysak MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 5:123–132. doi:10.1080/00087114.1998.10589127

    Article  Google Scholar 

  • Mislevy P, Martin FG, Adjei MB, Miller JD (1997) Harvest management effects on quantity and quality of Erianthus plant morphological components. Biomass Bioenergy 13:51–58. doi:10.1016/S0961-9534(97)00023-8

    Article  Google Scholar 

  • Mueller SA, Anderson JE, Wallington TJ (2011) Impact of biofuel production and other supply and demand factors on food price increases in 2008. Biomass Bioenergy 35:1623–1632. doi:10.1016/j.biombioe.2011.01.030

    Article  Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  • Murray BG (2005) When does intraspecific C value variation become taxonomically significant? Ann Bot 95:119–125. doi:10.1093/aob/mci007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326. doi:10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair NV, Praneetha M (2006) Cyto-morphological studies on three Erianthus arundinaceus (Retz.) Jeswiet accessions from Andaman-Nicobar islands, India. Cytologia 71:107–109. doi:10.1508/cytologia.71.107

    Article  Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN, Mary S (2005) Molecular diversity among Saccharum, Erianthus, Sorghum, Zea and their hybrids. Sugar Tech 7:55–59. doi:10.1007/BF02942418

    Article  CAS  Google Scholar 

  • Nakagawa H, Sakai M, Harada T, Ichinose T, Takeno K, Matsumoto S, Kobayashi M, Matsumoto K, Yakushido K (2011) Biomethanol production from forage grasses, trees, and crop residues. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology, Chapter 30. Rijeka, Croatia, pp 715–732. doi: 10.5772/18168

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi:10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  • Roldán-Ruiz I, Dendauw J, van Bockstaele E, Depicker A, Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–126. doi:10.1023/A:1009680614564

    Article  Google Scholar 

  • Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, Urquiaga S, Reis V, Ho Lem C (2005) The potential of C4 perennial grasses for developing a global BIOHEAT industry. Crit Rev Plant Sci 24:461–495. doi:10.1080/07352680500316508

    Article  Google Scholar 

  • Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation—a review. J Sci Ind Res 67:962–979

    CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex Saccharum and Erianthus. Genet Resour Crop Evol 53:831–842. doi:10.1007/s10722-004-6376-6

    Article  CAS  Google Scholar 

  • Shimoda S, Soekawa O, Takemiya K, Hikari T, Atari K, Higo Y, Nagai M, Masakura K, Ujihara K, Sugimoto A (2000) Exploration for collecting wild relatives of sugarcane in Amami islands, Kagoshima prefecture. Ann Rep Explor Introd Plant Genet Resour 16:29–33 (Japanese with English summary)

    Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678. doi:10.1093/aob/mcl150

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuruta S, Ebina M, Kobayashi M, Hattori T, Terauchi T (2012) Analysis of genetic diversity in the bioenergy plant Erianthus arundinaceus (Poaceae: Andropogoneae) using amplified fragment length polymorphism markers. Grassl Sci 58:174–177. doi:10.1111/j.1744-697X.2012.00258.x

    Article  Google Scholar 

  • Tsuruta S, Ebina M, Kobayashi M, Takahashi W, Terajima Y (2017) Development and validation of genomic simple sequence repeat markers in Erianthus arundinaceus. Mol Breed. doi:10.1007/s11032-017-0675-z (In press)

    Google Scholar 

  • Yan JJ, Zhang JB, Sun K, Chang D, Bai SQ, Shen XY, Huang L, Zhang J, Zhang Y, Dong Y (2016) Ploidy level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics. PLoS One 11:e0151948. doi:10.1371/journal.pone.0151948

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Li FS, Liu XZ, He LL, Yang QH, He SC (2008) Analysis of genetic variation in Erianthus arundinaceus by random amplified polymorphic DNA markers. Afr J Biotechnol 7:3414–3418

    CAS  Google Scholar 

  • Zhang JB, Yan JJ, Zhang YW, Ma X, Bai SQ, Wu Y, Dao Z, Li D, Zhang C, Zhang Y, You M, Yang F, Zhang J (2013) Molecular insights of genetic variation in Erianthus arundinaceus populations native to China. PLoS One 8:e80388. doi:10.1371/journal.pone.0080388

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JB, Yan JJ, Shen XY, Bai SQ, Li DX, Zhang Y, You MH, Zhang Y (2017) Development of polymorphic microsatellite markers and their use in collections of Erianthus arundinaceus in China. Grassl Sci 63:54–60. doi:10.1111/grs.12148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. N. Uwatoko and H. Yamashita of NARO Kyushu Okinawa Agricultural Research Center, Koshi, Kumamoto, Japan, who kindly provided the N. porphyrocoma accession. We also thank Dr. T. Yamada of Hokkaido University, Sapporo, Hokkaido, Japan, who kindly provided M. sinensis accessions. In addition, we thank the staff of the Forage Plant Breeding and Genetics group at NARO-ILGS for their technical assistance with flow cytometric analyses. This study was supported by a research grant from the Japan International Research Center for Agricultural Sciences (B0000a1B3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Tsuruta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Stobiecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuruta, Si., Ebina, M., Terajima, Y. et al. Genetic variability in Erianthus arundinaceus accessions native to Japan based on nuclear DNA content and simple sequence repeat markers. Acta Physiol Plant 39, 220 (2017). https://doi.org/10.1007/s11738-017-2519-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2519-1

Keywords

Navigation