Skip to main content
Log in

Photosynthetic characteristics and nitrogen allocation in the black locust (Robinia pseudoacacia L.) grown in a FACE system

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Key message

The black locust is adapted to elevated [CO 2 ] through changes in nitrogen allocation characteristics in leaves.

Abstract

The black locust (Robinia pseudoacacia L.) is an invasive woody legume within Japan. This prolific species has a high photosynthetic rate and growth rate, and undergoes symbiosis with N2-fixing micro-organisms. To determine the effect of elevated CO2 concentration [CO2] on its photosynthetic characteristics, we studied the chlorophyll (Chl) and leaf nitrogen (N) content, and the leaf structure and N allocation patterns in the leaves and acetylene reduction activity after four growing seasons, in R. pseudoacacia. Our specimens were grown at ambient [CO2] (370 μmol mol−1) and at elevated [CO2] (500 μmol mol−1), using a free air CO2 enrichment (FACE) system. Net photosynthetic rate at growth [CO2] (A growth) and acetylene reduction activity were significantly higher, but maximum carboxylation rate of RuBisCo (V cmax), maximum rate of electron transport driving RUBP regeneration (J max), net photosynthetic rate under enhanced CO2 concentration and light saturation (A max), the N concentration in leaf, and in leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) content were significantly lower grown at elevated [CO2] than at ambient [CO2]. We also found that RuBisCo/N were less at elevated [CO2], whereas Chl/N increased significantly. Allocation characteristics from N in leaves to photosynthetic proteins, NL (Light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and other proteins also changed. When R. pseudoacacia was grown at elevated [CO2], the N allocation to RuBisCo (NR) decreased to a greater extent but NL and N remaining increased relative to specimens grown at ambient [CO2]. We suggest that N remobilization from RuBisCo is more efficient than from proteins of electron transport (NE), and from NL. These physiological responses of the black locust are significant as being an adaptation strategy to global environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A growth :

Net photosynthetic rate at growth CO2 concentration

A max :

Net photosynthetic rate under enhanced CO2 concentration and light saturation

ANOVA:

Analysis of variance

ARA:

Acetylene reduction assay

CBB:

Coomassie brilliant blue

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

Ci:

Intercellular CO2 concentration

C/N ratio:

Carbon to nitrogen ratio

[CO2]:

CO2 concentration

C*:

CO2 compensation point in the absence of Rd

FACE:

Free air CO2 enrichment

J :

The potential electron transport rate

J max :

Maximum rate of electron transport driving RUBP regeneration

LED:

Light emitting diode

LHC:

Light-harvesting complex

LMA:

Leaf mass per unit area

N:

Nitrogen

Narea:

Nitrogen content per unit leaf area

NE :

Nitrogen allocation to electron transport proteins except NL and the carbon cycle proteins except RuBisCo

NL :

Nitrogen allocation to LHC, PSI and PSII

Nm:

Nitrogen content per unit leaf mass

NR :

Nitrogen allocation to RuBisCo

Pc :

Photosynthetic rate limited by RuBisCo activity

P i :

Inorganic phosphate

P j :

Electron transport-limited gross carboxylation rate

P N :

Net photosynthetic rate

P N/C i curve:

Net photosynthetic rate/intercellular CO2 concentration curve

PNUE:

Photosynthetic nitrogen use efficiency

P max :

Maximum mass-based net CO2 assimilation rate

PPFD:

Photosynthetic photon flux density

PSI:

Photosystem I

PSII:

Photosystem II

Rd:

Day respiration

RuBP:

Ribulose-1,5-bisphosphate

RuBisCo:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SDS–PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

Q :

Photosynthetic photon flux density of light saturation

V cmax :

Maximum carboxylation rate of RuBisCo

WUE:

Water-use efficiency

Г*:

CO2 compensation point

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi:10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  • Atkin OK, Schortemeyer M, McFarlane N, Evans JR (1999) The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120:544–554. doi:10.1007/s004420050889

    Article  Google Scholar 

  • Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100. doi:10.1016/0098-8472(92)90034-Y

    Article  CAS  Google Scholar 

  • Barrett RP, Mebrahtu T, Hanover JW (1990) Black locust: a multipurpose tree species for temperate climates. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants, 2nd edn. Wiley Blackwell, Hoboken

    Google Scholar 

  • Choi DS, Kayama M, Chung DJ, Jin HO, Quoreshi AM, Maruyama Y, Koike T (2005a) Mycorrhizal activities in Pinus densiflora, P. koraiensis and Larix kaempferi native to Korea raised under high CO2 concentrations and water use efficiency. Phyton 45:139–144

    CAS  Google Scholar 

  • Choi DS, Quoreshi AM, Maruyama Y, Jin HO, Koike T (2005b) Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations. Photosynthetica 43:223–229. doi:10.1007/s11099-005-0037-7

    Article  Google Scholar 

  • Choi DS, Kayama M, Jin HO, Lee CH, Izuta T, Koike T (2006) Growth and photosynthetic responses of two pine species (Pinus koraiensis and Pinus rigida) in a polluted industrial region in Korea. Environ Pollut 139:421–432. doi:10.1016/j.envpol.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  • Choi DS, Makoto K, Quoreshi AM, Qu L (2009) Seed germination and seedling physiology of Larix kaempferi and Pinus densiflora in seedbeds with charcoal and elevated CO2. Landsc Ecol Eng 5:107–113. doi:10.1007/s11355-009-0072-9

    Article  Google Scholar 

  • Choi DS, Toda H, Kim YS (2014) Effect of sulfur dioxide (SO2) on growth and physiological activity in Alnus sieboldiana at Miyakejima Island in Japan. Ecol Res 29:103–110. doi:10.1007/s11284-013-1103-4

    Article  CAS  Google Scholar 

  • Coleman JS, McConnaughay KDM, Bazzaz FA (1993) Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93:195–200

    Article  Google Scholar 

  • Dewar RC, Medlyn BE, McMurtrie RE (1998) A mechanistic analysis of light and carbon use efficiencies. Plant Cell Environ 21:573–588

    Article  Google Scholar 

  • Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008a) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees 22:437–447. doi:10.1007/s00468-007-0204-5

    Article  CAS  Google Scholar 

  • Eguchi N, Morii N, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008b) Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a CO2-enriched atmosphere. Tree Physiol 28:287–295. doi:10.1093/treephys/28.2.287

    Article  CAS  PubMed  Google Scholar 

  • Evans JR (1987) The relationship between electron transport components and photosynthetic capacity in pea leaves grown at different irradiances. Aust J Plant Physiol 14:157–170

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis – the dependence on nitrogen partitioning. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp 159–174

    Google Scholar 

  • Evans JR, Seemann JR (1989) The allocation of protein nitrogen in the photosynthetic apparatus: cost, consequences and control. In: Brigs WR (ed) Photosynthesis. Alan R. Liss, New York, pp 171–203

    Google Scholar 

  • Evans JR, Terashima I (1987) Effect of nitrogen nutrition on electron transport components and photosynthesis in spinach. Aust J Plant Physiol 14:59–68. doi:10.1071/PP9870059

    Article  CAS  Google Scholar 

  • Evans JR, Schortemeyer M, McFarlane N, Atkin OK (2000) Photosynthetic characteristics of 10 Acacia species grown under ambient and elevated atmospheric CO2. Aust J Plant Physiol 27:13–25. doi:10.1071/TT99126

    CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi:10.1007/BF00386231

    Article  CAS  PubMed  Google Scholar 

  • Feldhake CM (2001) Microclimate of a natural pasture under planted Robinia pseudoacacia in central Appalachia, West Virginia. Agrofor Syst 53:297–303. doi:10.1023/A:1013331628494

    Article  Google Scholar 

  • Feng Z, Dyckmans J, Flessa H (2004) Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia. Tree Physiol 24:323–330. doi:10.1093/treephys/24.3.323

    Article  CAS  PubMed  Google Scholar 

  • Field C, Merino J, Mooney HA (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreen. Oecologia 60:384–389

    Article  Google Scholar 

  • Gutiérrez E, Gutiérrez D, Morcuende R, Verdejo AL, Kostadinova S, Martinez Carrasco R, Pérez P (2009) Change in leaf morphology and composition with future increases in CO2 and temperature revisited: wheat in field chambers. J Plant Growth Regul 28:349–357. doi:10.1007/s00344-009-9102-y

    Article  CAS  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207. doi:10.1104/pp.43.8.1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley PC, Loreto F, Marco GD, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436. doi:10.1104/pp.98.4.1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375. doi:10.1046/j.1469-8137.2002.00537.x

    Article  Google Scholar 

  • Hikosaka K (1996) Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Planta 198:144–150. doi:10.1007/BF00197597

    Article  CAS  Google Scholar 

  • Hikosaka K, Terashima I (1995) A model of the acclimation of photosynthesis in the leaves of C-3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ 18:605–618. doi:10.1111/j.1365-3040.1995.tb00562.x

    Article  CAS  Google Scholar 

  • Hilbert DW, Larigauderie A, Reynolds JF (1991) The influence of carbon dioxide and daily photon-flux density on optimal leaf nitrogen concentration and root:shoot ratio. Ann Bot 68:365–376

    Article  CAS  Google Scholar 

  • Hoosbeek MR, Lukac M, Velthorst E, Smith AR, Godbold DL (2011) Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales. Biogeosciences 8:353–364. doi:10.5194/bg-8-353-2011

    Article  CAS  Google Scholar 

  • Hopkins WG, Hüner NPA (2009) Introduction to plant physiology, 4th edn. Wiley, New York

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Team Core Writing, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jacob J, Greitner C, Drake BG (1995) Acclimation of photosynthesis in relation to RuBisCo and non-structural carbohydrate contents and in situ carboxylase activity in Scirpus olneyi grown at elevated CO2 in the field. Plant Cell Environ 18:875–884. doi:10.1111/j.1365-3040.1995.tb00596.x

    Article  CAS  Google Scholar 

  • Japan Meteorological Agency (2016) Table of climatological normals (1981–2010). Japan Meteorological Agency (JMA) Website. http://www.data.jma.go.jp/obd/stats/data/en/normal/normal.html. Accessed 15 March 2016

  • Karaki T, Watanabe Y, Kondo T, Koike T (2012) Strophiole of seeds of the black locust acts as a water gap. Plant Species Biol 27:226–232. doi:10.1111/j.1442-1984.2011.00343.x

    Article  Google Scholar 

  • Katahata S, Naramoto M, Kakubari Y, Mukai Y (2007) Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees 21:619–629. doi:10.1007/s00468-007-0155-x

    Article  CAS  Google Scholar 

  • Kitao M, Löw M, Heerdt C, Grams TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544. doi:10.1016/j.envpol.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka S, Koike T (2004) Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiol Plant 121:604–611. doi:10.1111/j.1399-3054.2004.00359.x

    Article  CAS  Google Scholar 

  • Koike T (1993) Ecophysiological responses of the northern tree species in Japan to elevated CO2 concentrations and temperature. In: Oshima Y (ed) First IGBP symposium. Japanese Society of Promotion of Sciences, Tokyo, pp 425–430

    Google Scholar 

  • Koike T, Izuta T, Lei TT, Kitao M, Asanuma S (1997) Effects of high CO2 on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels. In: Ando T (ed) Plant nutrition for sustainable food production and environment in developments in plant and soil sciences. Springer, The Netherlands, pp 887–888

    Chapter  Google Scholar 

  • Koike T, Kitaoka S, Masyagina OV, Watanabe Y, Ji D, Maruyama Y, Sasa K (2007) Nitrogen dynamics in leaves of deciduous broad-leaved tree seedlings grown in summer green forest in northern Japan. Eurasian J For Res 10:115–119

    Google Scholar 

  • Koike T, Watanabe M, Watanabe Y, Agathokleous E, Eguchi N, Takagi K, Satoh F, Kitaoka S, Funada R (2015) Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (Free Air CO2 Enrichment). J Agric Met 71:174–184. doi:10.2480/agrmet.D-14-00020

    Article  Google Scholar 

  • Kurokochi H, Toyama K, Hogetsu T (2010) Regeneration of Robiniapseudoacacia riparian forests after clear-cutting along the Chikumagawa river in Japan. Plant Ecol 210:31–41. doi:10.1007/s11258-010-9735-8

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, Berlin

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology; ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin

    Google Scholar 

  • Lee CS, Cho HJ, Yi H (2004) Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. For Ecol Manag 189:281–293. doi:10.1016/j.foreco.2003.08.012

    Article  Google Scholar 

  • Liu J, Zhang D, Zhou G, Duan H (2012) Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated [CO2], N fertilization and canopy positions. J Plant Ecol 5:376–390. doi:10.1093/jpe/rts006

    Article  Google Scholar 

  • Lopez MLC, Mizota C, Nobori Y, Sasaki T, Yamanaka T (2014) Temporal changes in nitrogen acquisition of Japanese black pine (Pinus thunbergii) associated with black locust (Robinia pseudoacacia). J For Res 25:585–589. doi:10.1007/s11676-014-0498-2

    Article  CAS  Google Scholar 

  • Luo Y, Field CB, Mooney HA (1994) Predicting responses of photosynthesis and root fraction to elevated [CO2]a: interaction among carbon, nitrogen and growth. Plant Cell Envron 17:1195–1204. doi:10.1111/j.1365-3040.1994.tb02017.x

    Article  Google Scholar 

  • Madhu M, Hatfield JL (2014) Interaction of carbon dioxide enrichment and soil moisture on photosynthesis, transpiration, and water use efficiency of soybean. Agric Sci 5:410–429. doi:10.4236/as.2014.55043

    Google Scholar 

  • Maekawa M, Nakagoshi N (1997) Impact of biological invasion of Robinia pseudo-acacia on zonation and species diversity of dune vegetation in Central Japan. Jpn J Ecol 47:131–143

    Google Scholar 

  • Makino A, Mae T, Ohira K (1985) Enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase purified from rice leaves. Plant Physiol 79:57–61. doi:10.1104/pp.79.1.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino A, Mae T, Ohira K (1988) Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 174:30–38. doi:10.1007/BF00394870

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Nakano H, Mae T, Shimada T, Yamamoto N (2000) Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased RuBisCo under CO2 enrichment. J Exp Bot 51:383–389. doi:10.1093/jexbot/51.suppl_1.383

    Article  CAS  PubMed  Google Scholar 

  • Malcolm GM, Bush DS, Rice SK (2008) Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a pine-oak ecosystem. Restor Ecol 16:70–78

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Millett J, Godbold D, Smith AR, Grant H (2012) N2 fixation and cycling in Alnus glutinosa, Betula pendula and Fagus sylvatica woodland exposed to free air CO2 enrichment. Oecologia 169:541–552. doi:10.1007/s00442-011-2197-4

    Article  PubMed  Google Scholar 

  • Nguyen NT, Mohapatra PK, Fujita K (2006) Elevated CO2 alleviates the effects of low P on the growth of N2-fixing Acacia auriculiformis and Acacia mangium. Plant Soil 285:369–379. doi:10.1007/s11104-006-9022-6

    Article  CAS  Google Scholar 

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866. doi:10.1046/j.1365-3040.1997.d01-133.x

    Article  Google Scholar 

  • Norby RJ (1987) Nodulation and nitrogenase activity in nitrogen fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol Plant 71:77–82. doi:10.1111/j.1399-3054.1987.tb04620.x

    Article  CAS  Google Scholar 

  • Norby RJ (1996) Oaks a high-CO2 world. Ann Sci For 53:413–429

    Article  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203. doi:10.1146/annurev-ecolsys-102209-144647

    Article  Google Scholar 

  • Norby RJ, Pastor J, Melillo JM (1986) Carbon-nitrogen interactions in CO2-enriched white oak; physiological and long-term perspectives. Tree Physiol 2:233–241. doi:10.1093/treephys/2.1-2-3.233

    Article  CAS  PubMed  Google Scholar 

  • Novriyanti E, Watanabe M, Kitao M, Utsugi H, Uemura A, Koike T (2012) High nitrogen and elevated [CO2] effects on the growth, defense and photosynthetic performance of two eucalypt species. Environ Pollut 170:124–130. doi:10.1016/j.envpol.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  • Olesniewicz KS, Thomas RB (1999) Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytol 142:133–140. doi:10.1046/j.1469-8137.1999.00372.x

    Article  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2005) Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. J Exp Bot 56:755–763. doi:10.1093/jxb/eri052

    Article  CAS  PubMed  Google Scholar 

  • Pérez P, Alonso A, Zita G, Morcuende R, Martínez-Carrasco R (2011) Down-regulation of RuBisCo activity under combined increases of CO2 and temperature minimized by changes in RuBisCo kcat in wheat. Plant Growth Regul 65:439–447. doi:10.1007/s10725-011-9613-y

    Article  CAS  Google Scholar 

  • Peterson R, Burris RH (1976) Conversion of acetylene reduction rates to nitrogen fixation rates in natural populations of blue-green algae. Anal Biochem 73:404–410. doi:10.1016/0003-2697(76)90187-1

    Article  CAS  PubMed  Google Scholar 

  • Peterson AG, Ball JT, Luo Y, Field CB, Curtis PS, Griffin KL, Gunderson CA, Norby RJ, Tissue DT, Forstreuter M, Rey A, Vogel CS, Participants C (1999) Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO2 enrichment. Plant Cell Environ 22:1109–1119. doi:10.1046/j.1365-3040.1999.00489.x

    Article  CAS  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. doi:10.1111/j.1469-8137.2009.02830.x

    Article  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969. doi:10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

  • Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecol 174:97–107. doi:10.1023/B:VEGE.0000046049.21900.5a

    Article  Google Scholar 

  • Rivera-Ortiz JM, Burris RH (1975) Interactions among substrates and inhibitors of nitrogenase. J Bacteriol 123:537–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated O2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336. doi:10.1111/j.1469-8137.2012.04074.x

    Article  CAS  PubMed  Google Scholar 

  • Rogers GS, Milham PJ, Thibaud MC, Conroy JP (1996) Interaction between rising CO2 concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration. Aust J Plant Physiol 23:119–125. doi:10.1071/PP9960119

    Article  CAS  Google Scholar 

  • Sage RF (1990) A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol 94:1728–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynthe Res 39:351–368. doi:10.1007/BF00014591

    Article  CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated carbon dioxide in five C3 species. Plant Physiol 89:590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz-Sáez Á, Erice G, Aranjuelo I, Nogués S, Irigoyen JJ, Sánchez-Díaz M (2010) Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. J Plant Physiol 167:1558–1565. doi:10.1016/j.jplph.2010.06.015

    Article  PubMed  CAS  Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Physiol 139:395–436. doi:10.1046/j.1469-8137.1998.00221.x

    Article  Google Scholar 

  • Schöllhorn R, Burris RH (1967) Acetylene as a competitive inhibitor of N2 fixation. PNAS 58:213–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Schortemeyer M, Atkin OK, McFarlane N, Evans JR (2002) N2 fixation by Acacia species increases under elevated atmospheric CO2. Plant Cell Environ 25:567–579. doi:10.1046/j.1365-3040.2002.00831.x

    Article  CAS  Google Scholar 

  • Shah VK, Davis LC, Brill WJ (1975) Nitrogenase VI; acetylene reduction assay; dependence of nitrogen fixation estimates on component ratio and acetylene concentration. Biochimica Biophysica Acta 384:353–359

    Article  CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and limitations. Bot Rev 51:53–105. doi:10.1007/BF02861058

    Article  Google Scholar 

  • Shinano T, Lei TT, Kawamukai T, Inoue MT, Koike T, Tadano T (1996) Dimethylsulfoxide method for the extraction of chlorophyll a and b from the leaves of wheat, field bean, dwarf bamboo, and oak. Photosynthetica 32:409–415

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21:437–445. doi:10.1093/treephys/21.7.437

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621. doi:10.1046/j.1365-3040.1999.00386.x

    Article  CAS  Google Scholar 

  • Takagi K, Eguchi N, Ueda T, Sasa K, Koike T (2004) CO2 control in a FACE system for tree saplings. J Agric Met 56:9–16 (In Japanese)

    Google Scholar 

  • Tissue DT, Thomas RB, Strain BR (1993) Long-term effects of elevated CO2 and nutrients on photosynthesis and RuBisCo in loblolly pine seedlings. Plant Cell Environ 16:859–965. doi:10.1111/j.1365-3040.1993.tb00508.x

    Article  CAS  Google Scholar 

  • Tissue DT, Griffin KL, Ball JT (1999) Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiol 19:221–228. doi:10.1093/treephys/19.4-5.221

    Article  PubMed  Google Scholar 

  • Tobita H, Kitao M, Koike T, Maruyama Y (2005) Effects of elevated CO2 and nitrogen availability on nodulation of Alnus hirsuta (Turcz.). Phyton 45:25–131

    Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kitaoka S, Maruyama Y, Utsugi H (2011) Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthesis and growth responses of Alnus hirusta. Funct Plant Ecol 38:702–710. doi:10.1071/FP11024

    CAS  Google Scholar 

  • Vogel CS, Curtis PS, Thomas RB (1997) Growth and nitrogen accretion of di-nitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecol 130:63–70

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97. doi:10.1007/BF00206296

    Article  Google Scholar 

  • von Caemmerer S, Ghannoum O, Conroy JP, Clark H, Newton PCD (2001) Photosynthetic responses of temperate species to free air CO2 enrichment (FACE) in a grazed New Zealand pasture. Aust J Plant Physiol 28:439–450. doi:10.1071/PP01009

    Google Scholar 

  • Watanabe Y, Satomura T, Sasa K, Funada R, Koike T (2010) Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Plant Cell Environ 33:1101–1111. doi:10.1111/j.1365-3040.2010.02132.x

    PubMed  Google Scholar 

  • Watanabe Y, Karaki T, Kondo T, Koike T (2014) Seed development of the black locust and physical dormancy in northern Japan. Phyton 54:305–320. doi:10.12905/0380.phyton54(2):2014-0305

    Google Scholar 

  • World Meteorological Organization (WMO) (2014) The state of greenhouse gases in the atmosphere based on global observations throuth 2013: Greenhouse Gas Bull 10:1–8. https://www.wmo.int/pages/prog/arep/gaw/ghg/documents/GHG_Bulletin_10_Nov2014_EN.pdf

  • Yamori W, Noguchi K, Hikosaka K, Terashima I (2010) Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol 152:388–399. doi:10.1104/pp.109.145862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commu 6:6675. doi:10.1038/ncomms7675

    Article  CAS  Google Scholar 

  • Zhang S, Dang QL, Yu X (2006) Nutrient and [CO2] elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. For Ecol Manag 234:238–244. doi:10.1016/j.foreco.2006.07.017

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. N. Eguchi, Mr. T. Agari, Dr. D. Ji and Mr. K. Karatsu of the Forest Dynamics research group of Hokkaido University for assistance with the fieldwork and analysis. Thanks are also due to Prof. Emeritus K. Sasa of Hokkaido University Forests for his kind assistance in managing the FACE system. This study was supported partly by the promotion of international joint research and international industry-university cooperation activities for the acceleration of innovation from Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, and by a Grant-in-Aid for Scientific Research (Innovation Research: 21114008 to T. Koike, Type B: 15H04511 to H. Toda) from Japan Society for the Promotion of Science (JSPS) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsu Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by U. Feller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Watanabe, Y., Guy, R.D. et al. Photosynthetic characteristics and nitrogen allocation in the black locust (Robinia pseudoacacia L.) grown in a FACE system. Acta Physiol Plant 39, 71 (2017). https://doi.org/10.1007/s11738-017-2366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2366-0

Keywords

Navigation