Skip to main content
Log in

Effects of the wheat UDP-glucosyltransferase gene TaUGT-B2 on Agrobacterium-mediated plant transformation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

UDP-glucosyltransferase enzymes (UGTs) are known to function in plant disease defense responses. In our previous RNA-seq analysis, TaUGT expression was found to be strongly up-regulated in Agrobacterium-infected wheat immature embryos, as compared to untreated controls. In this study, we isolated the TaUGT-B2, located on wheat 2BS chromosome, and characterized its function in tobacco, Arabidopsis, and wheat. Transient overexpression of TaUGT-B2 reduced the number of Agrobacterium cells attached to the surface of wheat cells, and hindered Agrobacterium-mediated GUS transient expression in wheat cells. Transiently silenced TaUGT-B2 expression resulted in an increased rate of shoot regeneration from Agrobacterium-infected wheat tissues. Therefore, we concluded that the overexpression of TaUGT-B2 impeded T-DNA transformation by reducing number of Agrobacterium cells attached to wheat tissues and lowering the regeneration efficiency of transgenic plantlets. In order to further investigate the function of TaUGT-B2, it was introduced into tobacco and Arabidopsis, and transgenic plants were then re-transformed with another vector carrying the GUS gene. The results of these experiments indicated that the expression of TaUGT-B2 in tobacco and Arabidopsis led to a reduction in the efficiency of Agrobacterium-mediated transformation. GUS transient expression was also impeded following overexpression of TaUGT-B2 in tobacco and Arabidopsis. Therefore, we conclude that TaUGT-B2 plays a negative role in Agrobacterium-mediated transformation of plants, especially in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

SAR:

Systemic acquired resistance

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM:

Scanning electron microscopy

TOGT:

UDP-glucose:phenylpropanoid glucosyltransferase

UGGT:

UDP-glucose:glycoprotein glycosyltransferase

UGTs:

UDP-glucosyltransferases

References

  • Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis VIRE2 interacting protein2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bińka A, Orczyk W, Nadolska-Orczyk A (2012) The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack): role of the binary vector system and selection cassettes. J Appl Genet 53:1–8

    Article  PubMed  Google Scholar 

  • Blanco-Herrera F, Moreno AA, Tapia R, Reyes F, Araya M, D’Alessio C, Parodi A, Orellana A (2015) The UDP-glucose: glycoprotein glucosyltransferase (UGGT), a key enzyme in ER quality control, plays a significant role in plant growth as well as biotic and abiotic stress in Arabidopsis thaliana. BMC Plant Biol 15:127. doi:10.1186/s12870-015-0525-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14:1093–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong T, Xu ZY, Park Y, Kim DH, Lee Y, Hwang I (2014) Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant Physiol 165:277–289. doi:10.1104/pp.114.239210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63:1791–1798

    Article  CAS  PubMed  Google Scholar 

  • He Y, Jones H, Chen S, Chen X, Wang D, Li K, Wang D, Xia L (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsch RB (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi:10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou H, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019. doi:10.1007/s00299-003-0617-6

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langlois-Meurinne M, Gachon CM, Saindrenan P (2005) Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol 139:1890–1901. doi:10.1104/pp.105.067223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie S, McKibbin RS, Halford NG (2003) Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos. J Exp Bot 54:739–747

    Article  CAS  PubMed  Google Scholar 

  • Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Meth Mol Biol (Clifton NJ) 323:225–229

    Google Scholar 

  • Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA 102:5733–5738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ye X, An B, Du L, Xu H (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6:183–193

    Article  Google Scholar 

  • Lim E-K, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J 23:2915–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin FY, Lu QX, Xu JH, Shi JR (2008) Cloning and expression analysis of two salt and Fusarium graminearum stress associated UDP-glucosyltransferases genes in wheat. Hered Beijing 30:1608–1614 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Ma LL, Shang Y, Cao AZ, Qi ZJ, Xing LP, Chen PD, Jun LD, Wang X (2010) Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai. Mol Biol Rep 37:785–795. doi:10.1007/s11033-009-9606-3

    Article  CAS  Google Scholar 

  • Matros A, Mock HP (2004) Ectopic expression of a UDP-glucose: phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with Potato Virus Y. Plant Cell Physiol 45:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Nat Biotechnol 6:923–926

    Article  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P (2009) Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 28:3439–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S, Torres-Acosta JA, Heinen SJ, McCormick S, Lemmens M, Paris MPK, Berthiller F, Adam G, Muehlbauer GJ (2012) Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. J Exp Bot 63:4731–4740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99:10435–10440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner AR (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124–4145. doi:10.1105/tpc.111.088443

    Article  Google Scholar 

  • Xu X, Wang M, Wang Y, Sima Y, Zhang D, Li J, Yin W, Xu S (2013) Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-O-glucosyltrans-ferase of UGT86, is an evolved response to dietary toxins. Mol Biol Rep 40:3631–3639

    Article  CAS  PubMed  Google Scholar 

  • Yin GX, Wang YL, She MY, Du LP, Xu HJ, Ma JX, Ye XG (2011) Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China 10:9–17

    Article  CAS  Google Scholar 

  • Zhou X, Wang K, Lv DW, Wu CJ, Li JR, Du LP, Lin ZS, Ye XG (2013) Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. PLoS One 8:e79390. doi:10.1371/journal.pone.0079390

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported in part by the Ministry of Agriculture of China (2014ZX08010-004) and the National Natural Science Foundation of China (31401380, 31371621), and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Ye.

Additional information

Communicated by J-H Liu.

Xiaohong Zhou and Ke Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, K., Du, L. et al. Effects of the wheat UDP-glucosyltransferase gene TaUGT-B2 on Agrobacterium-mediated plant transformation. Acta Physiol Plant 39, 15 (2017). https://doi.org/10.1007/s11738-016-2317-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2317-1

Keywords

Navigation