Skip to main content
Log in

Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fusarium head blight, also called scab, is a serious disease of small grain cereals and maize. Scab can not only cause yield loss, more seriously is that it can also deteriorate seed quality by contaminating the infected grains with trichothecenes toxins harmful to human and animal health. Deoxynivalenol (DON) is one of the most important toxin members. It was proposed that DON acted first as a virulence factor during fungal pathogenesis and then accumulated in grain to levels posing a threat to human and animal health. In the present research, by expression analysis of DON-induced samples using GeneChip® Wheat Genome Array (http://www.affymetrix.com/products/arrays/specific/wheat.affx), a DON-resistance related gene TaUGT3 (GenBank accession FJ236328) was cloned and characterized from a scab resistant wheat (Triticum aestivum L.) variety Wangshuibai. The full-length cDNA of TaUGT3 was 1,755 bp and contained a putative open reading frame (ORF) with 496 amino acids encoding a UDP-glucosyltransferase (UGT). TaUGT3 showed high similarity in amino acid level with DOGT1 gene in Arabidopsis, which is able to detoxify DON. TaUGT3 was located on the group 3 chromosomes of wheat using nulli-tetrasomic lines and deletion lines of Chinese Spring. Co-transformed of TaUGT3 with GFP genes to onion epidermis cells using transient transformation technique by microprojectile bombardment indicated the subcellular location of the protein encoded by TaUGT3 was in the plasma membrane and nuclear. Transformation and overexpression of the TaUGT3 gene in Arabidopsis could enhance tolerance against DON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FHB:

Fusarium head blight

DON:

Deoxynivalenol

UGT:

UDP-glucosyltransferase

GSTs:

Glatocnine S-transferases

PAL:

Phenylalanine ammonialyases

GTs:

Glucosyltransferases

ZEN:

Zearalenone

15-A-DON:

15-Acetyl-deoxynivalenol

References

  1. Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21. doi:10.1094/PHYTO.2000.90.1.17

    Article  CAS  PubMed  Google Scholar 

  2. McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348. doi:10.1094/PDIS.1997.81.12.1340

    Article  Google Scholar 

  3. Placinta CM, D’Mello JPFD, Macdonald AMC (1999) A review of worldwide contamination of cereal grains and animal feeds with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37. doi:10.1016/S0377-8401(98)00278-8

    Article  CAS  Google Scholar 

  4. Mesterházy A (1995) Types and components of resistance to Fusarium head blight. Plant Breed 114:377–386. doi:10.1111/j.1439-0523.1995.tb00816.x

    Article  Google Scholar 

  5. Xie MC, Wang MZ (1999) Relationship between wheat scab disease severity and DON content. Acta Phytopathol Sin 29:41–44 (in Chinese with an English Abstract)

    Google Scholar 

  6. Miller JD, Young JC, Sampson DR (1985) Deoxynivalenol and Fusarium head blight resistance in spring cereals. J Phytopathol 113:359–367

    CAS  Google Scholar 

  7. Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150

    CAS  Google Scholar 

  8. Bai GH, Desjardins AE, Plattner RD (2001) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98. doi:10.1023/A:1014419323550

    Article  Google Scholar 

  9. Alexander NJ, McCormick SP, Hohn TM (1999) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261:977–984. doi:10.1007/s004380051046

    Article  CAS  PubMed  Google Scholar 

  10. Mitterbauer R, Adam G (2002) Saccharomyces cerevisae and Arabidopsis thaliana: useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins. Eur J Plant Pathol 108:699–703. doi:10.1023/A:1020666627267

    Article  CAS  Google Scholar 

  11. Harris LJ, Gleddie SC (2001) A modified Rp13 gene from rice confers resistance of the Fusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco. Physiol Mol Plant Pathol 58:73–181. doi:10.1006/pmpp.2001.0326

    Article  Google Scholar 

  12. Lucyshyn D, Busch BL, Abolmaali S et al (2007) Cloning and characterization of the ribosomal protein L3 (RPL3) gene family from Triticum aestivum. Mol Gen Genet 277:507–517

    CAS  Google Scholar 

  13. Poppenberger B, Berthiller F, Lucyshyn D et al (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914. doi:10.1074/jbc.M307552200

    Article  CAS  PubMed  Google Scholar 

  14. Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564. doi:10.1139/g03-033

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Griffey CA, Saghai Maroof MA et al (2006) Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat line W14. Plant Breed 125:99–101. doi:10.1111/j.1439-0523.2006.01182.x

    Article  CAS  Google Scholar 

  16. Ma HX, Zhang KM, Gao L et al (2006) Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Plant Pathol 55:739–745. doi:10.1111/j.1365-3059.2006.01447.x

    Article  CAS  Google Scholar 

  17. Jiang GL, Dong YH, Shi JR et al (2007) QTL analysis of resistance to fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043–1052. doi:10.1007/s00122-007-0630-1

    Article  PubMed  Google Scholar 

  18. Lemmens M, Scholz U, Berthiller F et al (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324. doi:10.1094/MPMI-18-1318

    Article  CAS  PubMed  Google Scholar 

  19. Qi ZJ, Pei ZY, Han HR et al (2005) Detection of deoxynivalenol (DON) content variation in common wheat produced by F. graminearum using DON test-HPLC. J Nanjing Agric Univ 28:6–10 (in Chinese with an English Abstract)

    CAS  Google Scholar 

  20. Zhang KM, Ma HX, Lu WZ et al (2006) Resistance to fusarium head blight and deoxynivalenol accumulation and variation of related ssr markers in wheat. Acta Agron Sin 32:1788–1795 (in Chinese with an English Abstract)

    CAS  Google Scholar 

  21. Chen HG, Cai ZX, Chen F et al (2007) The types of resistance to fusarium head blight and deoxynnivalenol content in the heads of different wheat germplasms. Acta Phytophylacica Sin 34:32–36 (in Chinese with an English Abstract)

    Google Scholar 

  22. Lin F, Kong ZX, Zhu HL et al (2004) Mapping QTL associated with resistance to fusarium head blight in the Nanda 2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511. doi:10.1007/s00122-004-1772-z

    Article  CAS  PubMed  Google Scholar 

  23. Yu J, Bai G, Zhou W et al. (2005) Mapping QTLs for different types of resistance to Fusarium head blight in Wangshuibai. In Proceedings of the 2005 national fusarium head blight forum, p 96

  24. Brierley HL, Webster P, Long SR (1995) The Pisum sativum TubAl gene, a member of a small family of α-tubulin sequences. Plant Mol Biol 27:715–727. doi:10.1007/BF00020225

    Article  CAS  PubMed  Google Scholar 

  25. Chiu WL, Niwa Y, Zeng W et al (2003) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330. doi:10.1016/S0960-9822(02)00483-9

    Article  Google Scholar 

  26. Matsuura K, Miyagawa I, Kobayashi M et al (2003) Arabidopsis 3-deoxy-d-manno-oct-2-ulosonate-8-phosphate synthase: cDNA cloning and expression analyses. J Exp Bot 54:1785–1787. doi:10.1093/jxb/erg181

    Article  CAS  PubMed  Google Scholar 

  27. Lin FY, Lu QX, Xu JH et al (2008) Cloning and expression analysis of two salt and Fusarium graminearum stress associated UDP-glucosyltransferases genes in wheat. Hereditas Beijing 30:1608–1614 (in Chinese with an English Abstract)

    Article  CAS  Google Scholar 

  28. Poppenberger B, Berthiller F, Bachmann H et al (2006) Expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl Environ Microbiol 72:4404–4410. doi:10.1128/AEM.02544-05

    Article  CAS  PubMed  Google Scholar 

  29. Horvath DM, Huang DJ, Chua NH (1998) Four classes of salicylate-induced tobacco genes. Mol Plant Microbe Interact 11:895–905. doi:10.1094/MPMI.1998.11.9.895

    Article  CAS  PubMed  Google Scholar 

  30. Frassinet-Tachet L, Baltz R, Chong J et al (1998) Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett 437:319–323. doi:10.1016/S0014-5793(98)01257-5

    Article  Google Scholar 

  31. Truesdale MR, Doherty HM, Loake GJ et al (1996) Molecular cloning of a novel wound-induced gene from tomato: twi1. Plant Physiol 112:446

    Google Scholar 

  32. O’Donnell PJ, Truesdale MR, Calvert CM et al (1998) A novel tomato gene that rapidly responds to wound-and pathogen-related signals. Plant J 14:137–142. doi:10.1046/j.1365-313X.1998.00110.x

    Article  PubMed  Google Scholar 

  33. Vogt T, Grimm R, Strack D (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin-and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J 19:509–519. doi:10.1046/j.1365-313X.1999.00540.x

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Baldauf S, Lim EK et al (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343. doi:10.1074/jbc.M007447200

    Article  CAS  PubMed  Google Scholar 

  35. Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq 5:41–49. doi:10.3109/10425179409039703

    Article  CAS  PubMed  Google Scholar 

  36. Shao H, He XZ, Achnine L et al (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154. doi:10.1105/tpc.105.035055

    Article  CAS  PubMed  Google Scholar 

  37. Latchinian-Sadek L, Ibrahim RK (1991) Flavonol ring B-specific O-glucosyltransferase; purification, production of polyclonal antibodies and immmunolocalization. Arch Biochem Biophys 289:230–236. doi:10.1016/0003-9861(91)90466-V

    Article  CAS  PubMed  Google Scholar 

  38. Richman A, Swanson A, Humphrey T et al (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J 41:56–67. doi:10.1111/j.1365-313X.2004.02275.x

    Article  CAS  PubMed  Google Scholar 

  39. Walter S, Brennan JM, Arunachalam C et al (2008) Components of the gene network associated with genotype-dependent response of wheat to the fusarium mycotoxin deoxynivalenol. Funct Integr Genomics 8:421–427. doi:10.1007/s10142-008-0089-4

    Article  CAS  PubMed  Google Scholar 

  40. Coutinho PM, Deleury E, Davies GJ et al (2003) An evolving hierarchical family classification for glucosyltransferases. J Mol Biol 328:307–317. doi:10.1016/S0022-2836(03)00307-3

    Article  CAS  PubMed  Google Scholar 

  41. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:64–174. doi:10.1007/s004250000492

    Article  Google Scholar 

  42. Horvath DM, Chua NH (1996) Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds. Plant Mol Biol 31:1061–1072. doi:10.1007/BF00040724

    Article  CAS  PubMed  Google Scholar 

  43. Leah JM, Worrall TL, Cobb AH (1992) Isolation and characterization of two glucosyltransferases from glycine max associated with bentazone metabolism. Pestic Sci 34:81–87. doi:10.1002/ps.2780340112

    Article  CAS  Google Scholar 

  44. Kreuz K, Tommasini R, Martinoia E (1996) Old enzymes for a new job (herbicide detoxification in plants). Plant Physiol 111:349–353

    CAS  PubMed  Google Scholar 

  45. Blume AJ, Lichtshtein D, Boone G (1979) Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci USA 76:5626–5630. doi:10.1073/pnas.76.11.5626

    Article  CAS  PubMed  Google Scholar 

  46. Yazaki K, Inushima K, Kataoka M et al (1995) Intracellular localization of UDPG: p-hydroxybenzoate glucosyltransferase and its reaction product in lithospermum cell cultures. Phytochemistry 38:1127–1130. doi:10.1016/0031-9422(94)00821-A

    Article  CAS  Google Scholar 

  47. Anhalt S, Weissenböck G (1992) Subcellular localization of luteolin glucuronides and related enzymes in rye mesophyll. Planta 187:83–88. doi:10.1007/BF00201627

    Article  CAS  Google Scholar 

  48. Ibrahim RK (1992) Immunolocalization of flavonoid conjugates and their enzymes. In: Stafford HA, Ibrahim RK (eds) Recent advances in phytochemistry, vol 26. Plenum, New York, pp 25–61

    Google Scholar 

  49. Snijders CHA, Krechting CF (1992) Inhibition of deoxynivalenol translocation and fungal colonization in fusarium head blight resistant wheat. Can J Bot 70:1570–1576

    CAS  Google Scholar 

  50. Bai GH, Shanet GE (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42:135–161. doi:10.1146/annurev.phyto.42.040803.140340

    Article  CAS  PubMed  Google Scholar 

  51. Zhou WC, Kolb FL, Yu JB et al (2004) Molecular characterization of fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome 47:1137–1143. doi:10.1139/g04-069

    Article  CAS  PubMed  Google Scholar 

  52. Li CJ, Zhu HL, Zhang CQ et al (2008) Mapping QTLs associated with fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica 163:185–191. doi:10.1007/s10681-007-9626-9

    Article  CAS  Google Scholar 

  53. Gonzalez Hernandez JL, Del Blanco A, Ali S et al. (2003) Wangshuibai: a hexaploid wheat resistant to the spread of Fusarium head bright.In: 2003 national Fusarium head bright forum proceedings. Bloomington, Minnesota, USA, pp 14–17

  54. Shi JR, Xu DH, Yang HY et al (2008) DNA marker analysis for pyramided of fusarium head blight (FHB) resistance QTLs from different germplasm. Genetica 133:77–84. doi:10.1007/s10709-007-9186-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by Nature Science Foundation of China (Grant No. 30330380), the 111 Project (Grant No. B08025), the Chinese High Tech Program of China (Grant No. 2006AA10Z1F6), the Nature Science Foundation of Jiangsu Province (No. BK2006720) and the McKnight Foundation CCRP program. We appreciate Professor Wenxian Sun of Chinese Agricultural University for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu Dajun or Wang Xiu-e.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lulin, M., Yi, S., Aizhong, C. et al. Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai. Mol Biol Rep 37, 785–795 (2010). https://doi.org/10.1007/s11033-009-9606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9606-3

Keywords

Navigation