Skip to main content
Log in

Effects of exogenously supplied sucrose on OsSUTs and OsSPSs transcript abundances and rice root ammonium assimilation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Sucrose has been known as pivotal carbon source for plant nutrient metabolism including ammonium (NH4 +) assimilation. However, the correlation between rice root NH4 + assimilation and gene expression responsible for sucrose allocation has not been investigated. Here, we reported the transcriptional regulation of OsSUTs and OsSPSs by exogenously supplied sucrose and the response of NH4 + assimilation in rice roots. Spraying sucrose to mature leaves of rice (Oryza sativa L. cv. indica 9311) up-regulated transcript abundances of leaf OsSUT1, OsSUT2, OsSUT3, OsSUT4, OsSPS6, and OsSPS11, down-regulated mRNA expression of leaf OsSUT5, OsSPS1, OsSPS2, and OsSPS8, increased soluble sugar contents in leaves and roots, and promoted root NH4 + assimilation. The similar responses, except for leaf OsSPS1 mRNA expression, were observed when sucrose was fed to hydroponic media. Rice (indica 9311) treated by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) exhibited altered transcript abundances of leaf OsSUTs and OsSPSs, lower contents of soluble sugars in leaves and roots, and reduced capacity of root NH4 + assimilation, which was partially reversed by sucrose supply. The results indicated that the exogenously supplied sucrose coordinately regulated leaf OsSUTs and OsSPSs mRNA expression and root NH4 + assimilation in rice seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

GS:

Glutamine synthetase

HXK:

Hexokinase

NADH-GOGAT:

NADH-dependent glutamate synthase

NADP+-ICDH:

NADP+-dependent isocitrate dehydrogenase

PEPC:

Phosphoenolpyruvate carboxylase

SPS:

Sucrose phosphate synthase

Suc:

Sucrose

SUT:

Sucrose transporter

TSC:

Total soluble carbohydrates

References

  • Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155:64–69

    Article  CAS  PubMed  Google Scholar 

  • Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant Cell Physiol 44:223–232

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65:1713–1735

    Article  CAS  PubMed  Google Scholar 

  • Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol 135:1753–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HJ, Wang SJ (2008) Molecular regulation of sink–source transition in rice leaf sheaths during the heading period. Acta Physiol Plant 30:639–649

    Article  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in sucrose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  • Chung P, Hsiao HH, Chen HJ, Chang CW, Wang SJ (2014) Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiol Plant 36:217–229

    Article  CAS  Google Scholar 

  • Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011) Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol 157:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom JS, Choi SB, Ward JM, Jeon JS (2012) The mechanism of phloem loading in rice (Oryza sativa). Mol Cells 33:431–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrario-Mery S, Hodges M, Hirel B, Foyer CH (2002) Photorespiration-dependent increases in phospho enolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-alpha-ketoglutarate aminotransferase. Planta 214:877–886

    Article  CAS  PubMed  Google Scholar 

  • Fieuw S, Muller-Rober B, Gálvez S, Willmitzer L (1995) Cloning and expression analysis of the cytosolic NADP+-dependent isocitrate dehydrogenase from potato (implications for nitrogen metabolism). Plant Physiol 107:905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Imaizumi N, Scofeld GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol 38:1389–1396

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Zhang Z, Miyao A, Hirochika H, Ohsugi R, Terao T (2010) Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J Exp Bot 61:3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber SC, Huber JL (1992) Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol 99:1275–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husted S, Hebbern CA, Mattsson M, Schjoerring JK (2000) A critical experimental evaluation of methods for determination of NH4 + in plant tissue, xylem sap and apoplastic fluid. Physiol Plant 109:167–179

    Article  CAS  Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine and aspartate metabolisms. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  • Irigoyen JJ, Einerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Ishimaru T, Nakazono M, Masumura T, Abiko M, San-oh Y, Nishizawa N, Kondo M (2007) A method for obtaining high integrity RNA from developing aleurone cells and starchy endosperm in rice (Oryza sativa L.) by laser microdissection. Plant Sci 173:321–326

    Article  CAS  Google Scholar 

  • Jelitto T, Sonnewald U, Willmitzer L, Hajirezeai M, Stitt M (1992) Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta 188:238–244

    Article  CAS  PubMed  Google Scholar 

  • Kanwal P, Gupta S, Arora S, Kumar A (2014) Identification of genes involved in carbon metabolism from Eleusine coracana (L.) for understanding their light-mediated entrainment and regulation. Plant Cell Rep 33:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Nat Acad Sci USA 109(28):11217–11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyomiya S, Nakanishi H, Uchida H, Tsuji A, Nishiyama S, Futatsubashi M, Tsukada H, Ishioka NS, Watanabe S, Ito T, Mizuniwa C, Osa A, Matsuhashi S, Hashimoto S, Sekine T, Mori S (2001) Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiol 125:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the ‘sink-regulation’ of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Kubik-Dobosz G, Bąkiewicz M, Górska A (2001) The importance of root carbohydrate abundance in ammonium uptake. Acta Physiol Plant 23(2):187–192

    Article  CAS  Google Scholar 

  • Kühn C, Barker L, Bürkle L, Frommer WB (1999) Update on sucrose transport in higher plants. J Exp Bot 50:935–953

    Article  Google Scholar 

  • Kunz S, Pesquet E, Kleczkowski LA (2014) Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One 9:e100312

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunz S, Gardeström P, Pesquet E, Kleczkowski LA (2015) Hexokinase1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis. Front Plant Sci 6:525. doi:10.3389/fpls.2015.00525

    Article  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Miflin BJ (2003) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41:555–564

    Article  CAS  Google Scholar 

  • Lee JW, Lee DS, Bhoo SH, Jeon JS, Lee YH, Hahn TR (2005) Transgenic Arabidopsis plants expressing Escherichia coli pyrophosphatase display both altered carbon partitioning in their source leaves and reduced photosynthetic activity. Plant Cell Rep 24:374–382

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, Wirén N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:1–21

    Article  Google Scholar 

  • Li JY, Liu XH, Cai QS, Gu H, Zhang SS, Wu YY, Wang CJ (2008) Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. J Integr Plant Biol 50:723–732

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Kao CH (1996) Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul 18:233–238

    Article  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angeiakis KA (1996) The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities. Physiol Plant 96:29–35

    Article  CAS  Google Scholar 

  • Mishra P, Dubey RS (2008) Effect of aluminium on metabolism of starch and sugars in growing rice seedlings. Acta Physiol Plant 30:265–275

    Article  CAS  Google Scholar 

  • Ngampanya B, Takeda T, Sonoda Y, Narangajavana J, Yamaguchi J (2002) Characterization of OsSUT2 cDNA expressed before flowering stage. Rice Genet Newslett 19:49–51

    Google Scholar 

  • Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R (2011) Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice. Plant Sci 181:159–166

    Article  CAS  PubMed  Google Scholar 

  • Osuna D, Usadel B, Morcuende R, Gibon Y, Bläsing OE, Höhne M, Günter M, Kamlage B, Trethewey R, Scheible WR, Stitt M (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J 49:463–491

    Article  CAS  PubMed  Google Scholar 

  • Peña-Cortés H, Liu XJ, Serrano JS, Schmid R, Willmitzer L (1992) Factors affecting gene expression of patatin and proteinase-inhibitor-II gene families in detached potato leaves: implications for their co-expression in developing tubers. Planta 186:495–502

    Article  PubMed  Google Scholar 

  • Rhodes D, Rendon GA, Stewart GR (1975) The control of glutamine synthetase level in Lemna minor L. Planta 125:201–211

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Samuilov VD, Lagunova EM, Gostimsky SA, Timofeev KN, Gusev MV (2003) Role of chloroplast photosystems II and I in apoptosis of pea guard cells. Biochemistry (Moscow) 68:912–917

    Article  CAS  Google Scholar 

  • Schaffer AA, Petreikov M (1997) Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol 113:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield GN, Hirose T, Gaudron JA, Upadhayaya NM, Ohsugi R, Furbank RT (2002) Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct Plant Biol 29:815–826

    Article  CAS  Google Scholar 

  • Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CLD, Furbank RT (2007) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot 58:483–495

    Article  CAS  PubMed  Google Scholar 

  • Setién I, Vega-Mas I, Celestino N, Calleja-Cervantes ME, González-Murua C, Estavillo JM, González-Moro MB (2014) Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato. J Plant Physiol 171:49–63

    Article  PubMed  Google Scholar 

  • Slewinski TL, Braun DM (2010) Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci 178:341–349

    Article  CAS  Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  CAS  PubMed  Google Scholar 

  • Strand Å, Zrenner R, Trevanion S, Stitt M, Gustafsson P, Gardeström P (2000) Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J 23:759–770

    Article  CAS  PubMed  Google Scholar 

  • Sun AJ, Xu HL, Gong WK, Zhai HL, Meng K, Wang YQ, Wei XL, Xiao GF, Zhu Z (2008) Cloning and expression analysis of rice sucrose transporter genes OsSUT2M and OsSUT5Z. J Integr Plant Biol 50(1):62–75

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Reinders A, LaFleur KR, Mori T, Ward JM (2010) Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Plant Cell Physiol 51:114–122

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang J, Larue C, Huber SC (2011) Decreased in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant Cell Environ 34:592–604

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Toyofuku K, Matsukura C, Yamaguchi J (2001) Sugar transporters involved in flowering and grain development of rice. J Plant Physiol 158:465–470

    Article  CAS  Google Scholar 

  • Valdez-Alarcon JJ, Ferrando M, Salerno G, Jimenez-Moraila B, Herrera-Estrella L (1996) Characterization of a rice sucrose-phosphate synthase encoding gene. Gene 170:217–222

    Article  CAS  PubMed  Google Scholar 

  • Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Nat Acad Sci USA 99(16):10876–10880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Jiang J, Oard JH (2000) Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Sci 156:201–211

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lu QT, Wen XG, Lu CM (2015) Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiol 169:2848–2862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen LY, Chase CD (1999) Mitochondrial gene expression in developing male gametophytes of male-fertile and S male-sterile maize. Sex Plant Reprod 11:323–330

    Article  CAS  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Cui KH, Xu AH, Nie LX, Huang JL, Peng SB (2015) Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol Plant 37:1–9

    Article  Google Scholar 

  • Yonekura M, Aoki N, Hirose T, Onai K, Ishiura M, Okamura M, Ohsugi R, Ohto C (2013) The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose. Front Plant Sci 4:31. doi:10.3389/fpls.2013.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YZ, Ou JQ, Wang ZQ, Zhang CF, Zhou ZP, Lin QH (2007) Regulation of carbon and nitrogen metabolisms in rice roots by 2-oxoglutarate at the level of hexokinase. Physiol Plant 129:296–306

    Article  CAS  Google Scholar 

  • Zhang CH, Shen ZJ, Zhang YP, Han J, Ma RJ, Korir NK, Yu ML (2013) Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Acta Physiol Plant 35:589–602

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. 31101595 and 30270130), and partially by the Fundamental Research Funds for the Central Universities (No. CCNU10A0155).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongze Yuan or Chufu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Klobus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yuan, Y., Zhou, W. et al. Effects of exogenously supplied sucrose on OsSUTs and OsSPSs transcript abundances and rice root ammonium assimilation. Acta Physiol Plant 38, 274 (2016). https://doi.org/10.1007/s11738-016-2285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2285-5

Keywords

Navigation