Skip to main content

Advertisement

Log in

Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Ornamental plants play an important role in human society since flowers are considered a vital component due to their beauty, texture, color, shape and fragrance. To produce high quality ornamentals, growers in general have intensified the use of agrochemicals without considering their deleterious impact on floral attributes. Also, the agrochemicals (including fertilizers and pesticides) used in floriculture are expensive and their excessive application results in emergence of pathogens resistant to such chemicals. It has, therefore, become imperative to develop renewable, inexpensive and eco-friendly fertilizers without producing any disturbing impact on quality of ornamentals. In this regard, phosphate solubilizing microorganisms (PSM) among plant growth promoting rhizobacteria have been identified as an efficient alternative to agrochemicals in floriculture. Even though, there are adequate reports on the effect of PSM on growth and development of numerous plants, information on the impact of PSM on production and quality of ornamental plants is, however, critically scarce. Considering these gaps and success of PSM application in floriculture achieved so far, efforts have been directed to highlight the impact of PSM on the production of ornamentals grown distinctively in different production systems. Also, the role of PSM in the management of ornamental diseases is discussed and considered. The review will conclude by identifying several PSM for future researches aiming to improve the health and quality of ornamentals grown in different production systems. Use of PSM is also likely to reduce the use of chemicals in floriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasniayzare SK, Sedaghathoor S, Dahkaei MNP (2012) Effect of biofertilizer application on growth parameters of Spathiphyllum illusion. Am Eurasian J Agric Environ Sci 12:669–673

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal A, Kadian K, Karishma, Neetu, Tanwar A, Gupta KK (2012) Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. J Appl Nat Sci 4:144–155

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emir J Food Agric 24:334–343

    Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Biological importance of phosphorus and phosphate solubilizing microorganisms—an overview. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers Inc., New York, pp 1–4

    Google Scholar 

  • Ahmad E, Khan MS, Zaidi Z (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104

    Article  CAS  Google Scholar 

  • Ahmad E, Zaidi A, Khan MS (2014) Response of PSM inoculation to certain legumes and cereal crops. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms: principles and application of Microphos Technology. Springer, Switzerland, pp 175–206

    Google Scholar 

  • Ajit NS, Verma R, Shanmugam V (2006) Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Curr Microbiol 52:310–316

    Article  CAS  PubMed  Google Scholar 

  • Akkim PR, Nagendran K, Vanitha S, Karthikeyan G, Raguchander T (2013) Fluorescent Pseudomonads mediated disease management of Macrophomina phaseolina inciting Coleus forskohlii (Briq.), a root rot pathogen. Afr J Agric Res 8:4787–4797

    Google Scholar 

  • Ali A, Tahir M, Rashid H, Ajmal B, Sajjad RN, Adeel A (2014) Investigation of biofertilizers influence on vegetative growth, flower quality, bulb yield and nutrient uptake in gladiolus (Gladiolus grandiflorus L.). Intern J Plant Anim Environ Sci 4:94–99

    CAS  Google Scholar 

  • Al-Mallah MK, Davey MR, Cooking EC (1987) Enzymatic treatment of clover root hairs removes a barrier to Rhizobium-host specificity. Biotechnol 5:1319–1322

    Article  CAS  Google Scholar 

  • Anderson NO, Younis A, Sun Y (2010) Intersimple sequence repeats distinguish genetic differences in Easter lily ‘Nellie White’ clonal ramets within and among bulb growers over years. J Am Soc Hortic Sci 135:445–455

    Google Scholar 

  • Anderson NO, Frick J, Younis A, Currey C (2012) Heritability of cold tolerance (winter hardiness) in Gladiolus × grandiflorus. In: Abdurakhmonov I (ed) Plant breeding. InTech, Rijeka, pp 297–331. ISBN 978-953-307-932-5

    Google Scholar 

  • Ashwin R, Bagyaraj DJ, Kale RD (2013) Response of marigold to bio-fertilizer enriched vermicompost. Soil Biol Ecol 33:160–166

    Google Scholar 

  • Babana AH, Dicko AH, Maïga K, Traoré D (2013) Characterization of rock phosphate-solubilizing microorganisms isolated from wheat (Triticum aestivum L.) rhizosphere in Mali. J Microbiol Microbiol Res 1:1–6

    Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:249–256

    Google Scholar 

  • Balasubramanian J (1989) Studies on the combined effect of Azospirillium, VA mycorrhizal and inorganic fertilizers on growth performance of French marigold (Tegetes putula L.). SIH 37:311

    Google Scholar 

  • Baloach N, Yousaf M, Akhter WP, Fahad S, Ullah B, Qadir G, Ahmed ZI (2014) Integrated effect of phosphate solubilizing bacteria and humic acid on physiomorphic attributes of maize. Int J Curr Microbiol Appl Sci 3:549–554

    CAS  Google Scholar 

  • Banuelos J, Alarcón A, Larsen J, Cruz-Sánchez S, Trejo D (2014) Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. J Soil Sci Plant Nutr 14(1):63–74

    Google Scholar 

  • Basharat N, Sobita S, Vijay SR (2011) Effect of Pseudomonas fluorescens on Fusarium oxysporum f. sp. gladioli causing corm rot disease of gladiolus. J Plant Dis Sci 6:51–53

    Google Scholar 

  • Bhatia S, Gupta YC, Dhiman SR (2004) Effect of growing media and fertilizers on growth and flowering of carnation under protected condition. J Ornam Hortic 7:174–178

    Google Scholar 

  • Bhatia S, Dubey RC, Maheshwari DK (2005) Enhancement of plant growth and suppression of collar rot of sunflower caused by Sclerotium rolfsii through fluorescent Pseudomonas. Ind Phytopathol 58:17–24

    Google Scholar 

  • Chai B, Wu Y, Liu P, Liu B, Gao M (2011) Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. J Basic Microbiol 51:5–14

    Article  CAS  PubMed  Google Scholar 

  • Chaitra R, Patil VS (2007) Integrated nutrient management studies in China aster (Callistephus chinensis Nees) cv. Kamini. Karnataka J Agric Sci 20:689–690

    Google Scholar 

  • Chandel S, Deepika R (2010) Recent advances in management and control of Fusarium yellows in Gladiolus species. J Fruit Ornam Plant Res 18:361–380

    Google Scholar 

  • Chaudhari SR, Patil AB, Patel NK (2013) Effect of organics, inorganics and biofertilizers on growth and yield of gladiolus (Gladiolus grandiflorus L.) cv. American beauty. Bioinfolet 10:1214–1217

    Google Scholar 

  • Chaudhary SS (2007) Effect of nitrogen, phosphorus and biofertilizer application on plant growth and bulb production in tuberose. Haryana J Hortic Sci 36:82–85

    CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006a) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen BD, Zhu YG, Smith FA (2006b) Effect of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from uranium miningimpacted soil. Chemosphere 62:1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2008) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  CAS  Google Scholar 

  • Coutinho FP, Felix WP, Yano-Melo AM (2012) Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecol Eng 42:85–89

    Article  Google Scholar 

  • Dalve PD, Mane SV, Nimbalkar RR (2009) Effect of biofertilizers on growth, flowering and yield of gladiolus. Asian J Hortic 4:227–229

    Google Scholar 

  • Damam M, Gaddam B, Kausar R (2015) Bio-management of root-rot disease caused by Macrophomina phaseolina in Coleus forskohlii. Intern J Pharmacog Phytochem Res 7:347–352

    Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  CAS  PubMed  Google Scholar 

  • Demir S (2004) Influence of arbuscular mycorrhiza on some physiological parameters of pepper. Turk J Biol 28:85–90

    Google Scholar 

  • Dhamangaonkar SN, Misra P (2009) Effect of Azotobacter chroococcum (PGPR) on the growth of bamboo (Bambusa bamboo) and maize (Zea mays) plants. Biofrontiers 1:24–31

    Google Scholar 

  • Dongardive SB, Golliwar VJ, Bhongle SA (2007) Effect of organic manure and biofertilizers on growth and flowering in Gladiolus cv. white prosperity. Plant Arch 7:657–658

    Google Scholar 

  • Ekin Z (2011) P-solubilizing bacteria and phosphorus fertilizer applications to sunflower improves seed set, seed filling efficiency and concentration of macro-and micro-nutrients of seeds. Turk J Field Crops 16:183–189

    Google Scholar 

  • El-Deeb B, Salih B, Youssuf G, Hesham E (2012) Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J Plant Interact 7:248–253

    Article  Google Scholar 

  • El-Mehalawy AA, Hassanin SM, Hassanin NM, Zaki SA (2007) Induction of resistance and biocontrol of Rhizoctonia in cotton against damping-off disease by rhizosphere yeasts and fungi. New Egypt J Microbiol 17:148–168

    Google Scholar 

  • El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits, and phylogenetic affiliation of rhizobacteria associated with wild plants grown arid soil. Front Microbiol 5:651

    Article  PubMed  PubMed Central  Google Scholar 

  • Eman AA, Monem AE, Saleh MMS, Mostafa EAM (2008) Minimizing the quantity of mineral nitrogen fertilization grapevine by using humic acid organic and biofertilizers. Res J Agric Sci 4:46–50

    Google Scholar 

  • Frank O, Julius O (2012) Some characteristics of a plant growth promoting Enterobacter sp. isolated from the roots of maize. Adv Microbiol 2:368–374

    Article  CAS  Google Scholar 

  • Frankowski JM, Lorito FS, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Fulsundar A, Pillai T, Thakur KS (2009) Biological and chemical management of gladiolus corm rot. J Soils Crops 19:135–138

    Google Scholar 

  • Gajera HP, Vakharia DN (2012) Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Braz J Microbiol 43:43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur A, Adholeya A (2005) Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. J Plant Nutr 28:707–723

    Article  CAS  Google Scholar 

  • Gayathri S, Sarvanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt marsh plant species. Ind J Biotechnol 9:397–402

    Google Scholar 

  • Goes KCGPD, Cattelan AJ, De Carvalho CGP (2012) Biochemical and molecular characterization of high population density bacteria isolated from sunflower. J Microbiol Biotechnol 22:437–447

    Article  CAS  Google Scholar 

  • Goldblatt P (1991) An overview of the systematics, phylogeny and biology of the southern African Iridaceae Contrib. Bolus Herb 13:1–74

    Google Scholar 

  • Goldstein AH (1986) Bacterial mineral phosphate solubilization: historical perspective and future prospects. Am J Alternat Agric 1:57–65

    Article  Google Scholar 

  • Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983

    Article  CAS  PubMed  Google Scholar 

  • Gullino ML, Camponogara A, Gasparrini G, Rizzo V, Clini C, Garibaldi A (2003) Replacing methyl bromide for soil disinfestations—the Italian experience and implications for other countries. Plant Dis 87:1012–1021

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Ann Rev Phytopathol 41:117–153

    Article  CAS  Google Scholar 

  • Hashemabadi D, Fatemeh Z, Maryam BZ, Mohammad Z, Behzad K, Maryam JS, Ali MT, Somayeh Z (2012) Influence of phosphate bio-fertilizer on quantity and quality features of marigold (Tagetes erecta L.). Aust J Crop Sci AJCS 6:1101–1109

    CAS  Google Scholar 

  • Hobbelen PHF, Paveley ND, Van Den BF (2014) The emergence of resistance to fungicides. PLoS One 9:E91910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoda EEM, Mona S (2014) Effect of bio and chemical fertilizers on growth and flowering of Petunia hybrida Plants. Am J Plant Physiol 9:68–77

    Article  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Jeyaraman S, Purushothaman S (1988) Biofertilizer efficiency in lowland rice. Intern Rice Res News Lett 13:24–26

    Google Scholar 

  • Karishma, Ashok A, Tanwar A, Neetu (2011) Efficacy of bio-inoculants, plant growth regulators and nutrients in prolonging the vase life of Chrysanthemum indicum (L.). Am Eurasian J Agric Environ Sci 11:593–599

    CAS  Google Scholar 

  • Karishma, Kuldeep Y, Anju T, Ashok A (2013a) Impact of arbuscular mycorrhizal fungi and Pseudomonas fluorescens with various levels of superphosphate on growth enhancement and flowering response of Gerbera. J Ornam Plants (J Ornam Hort Plants) 3:161–170

    Google Scholar 

  • Karishma, Ashok A, Anju T (2013b) Growth and flower enhancement of Chrysanthemum indicum on inoculation with arbuscular mycorrhizae and other bio-inoculants. Ind Phytopathol 66:57–60

    Google Scholar 

  • Karpagam T, Nagalakshmi PK (2014) Isolation and characterization of phosphate solubilizing microbes from agricultural soil. Int J Curr Microbiol Appl Sci 3:601–614

    CAS  Google Scholar 

  • Karuppiah P, Rajaram S (2011) Exploring the potential of chromium reducing Bacillus sp. and their plant growth promoting activities. J Microbiol Res 1:17–23

    Article  Google Scholar 

  • Kashyap R, Chaudhary SVS, Dilta BS, Sharma BP, Gupta YC (2014) Integrated nutrient management in Tuberose, Polianthes Tuberosa L. Intern J Farm Sci 4:55–59

    Google Scholar 

  • Katan J (2000) Soil and substrate disinfestations as influenced by new technologies and constraints. Acta Hortic 532:29–35

    Article  Google Scholar 

  • Kenasa G, Jida M, Assefa F (2014) Characterization of phosphate solubilizing faba bean (Vicia faba L.) nodulating rhizobia isolated from acidic soils of Wollega, Ethiopia. Sci Technol Arts Res J 3:11–17

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan FU, Siddique MAA, Khan FA, Nazki IT (2009) Effect of biofertilizers on growth, flower quality and bulb yield in tulip (Tulipa gesneriana). Ind J Agric Sci 79:248–251

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate solubilizing microorganisms. Phosphate solubilising microorganisms: principles and application of Microphos Technology. Springer, Switzerland, pp 31–62

    Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Koley S, Pal AK (2011) Response of inorganic fertilizer and biofertilizer on growth and flower yield of tuberose (Polianthes tuberosa L.) cv. Prajwal in the plains of West Bengal. J Crop Weed 7:241–243

    Google Scholar 

  • Kumar, Kranthi G, Raghu RM (2014) Phosphate solubilizing rhizobia isolated from Vigna trilobata. Am J Microbiol Res 23:105–109

    Article  Google Scholar 

  • Kumari A, Goyal RK, Sehrawat SK, Choudhary M, Sindhu SS (2014) Growth, yield and quality of Chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Dolly orange as influenced by biofertilizers in combination with phosphorous. IJAEB 7:555–564

    Google Scholar 

  • Lindsay WL, Vlek PLG, Chien SH (1989) Phosphate minerals. In: Dixon JB, Weed SB (eds) Soil environment, 2nd edn. Soil Science Society America, Madison, pp 1089–1130

    Google Scholar 

  • Lipping Y, Jiatao X, Daohong J, Yanping F, Guoqing L, Fangcan L (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Article  CAS  Google Scholar 

  • Long L-K, Qing Y, Huang YH, Rui-Heng Y, Jun G, Hong-Hui Z (2010) Effect of arbuscular mycorrhizal fungi on Zinnia and the different colonization between Gigaspora and Glomus. World J Microbiol Biotechnol 26:1527–1531

    Article  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Mardad I, Serrano A, Soukri A (2013) Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. Afr J Microbiol Res 7:626–635

    CAS  Google Scholar 

  • Maria V, Mercedes S, Vicente B, Encarnación J, Iana N, Vanessa M, Nikolay V (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299

    Article  CAS  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Defago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorecens strains CHOA with enhanced antibiotic production. Plant Pathol 44:40–50

    Article  Google Scholar 

  • Mazurier M, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • Meenakshi B, Prabhat K, Santosh K (2014) Impact of integrated nutrient management on post-harvest and corm characters of gladiolus cv. Novalux. Ann Hortic 7:109–114

    Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  PubMed  Google Scholar 

  • Mendes GO, Zafra DL, Vassilev NB, Silva IR, Ribero JI Jr, Costa MD (2014) Biochar enhances Aspergillus niger rock phosphate solubilisation by increasing organic acid production and alleviating fluoride toxicity. Appl Environ Microbiol 80:3081–3085

    Article  PubMed Central  CAS  Google Scholar 

  • Meshram N, Badge S, Bhongle SA, Khiratkar SD (2008) Effect of bio-inoculants with graded doses of NPK on flowering, yield attributes and economics of annual chrysanthemum. J Soils Crops 18:217–220

    Google Scholar 

  • Mishra RK, Prakash O, Alam M, Dikshit A (2010) Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. Herit. Recent Res Sci Technol 2:53–57

    CAS  Google Scholar 

  • Mishra RK, Prakash O, Tiwari AK, Pandey A, Alam M, Dikshit A (2011) Culture filtrate antibiosis of plant growth promoting rhizobacteria PGPRs against phytopathogens infecting medicinal and aromatic plants. Intern J Res Biol Sci 1:45–51

    Google Scholar 

  • Moghadam MZ, Shoor M (2013) Effects of vermi-compost and two bacterial bio-fertilizers on some quality parameters of Petunia. Not Sci Biol 5:226–231

    Google Scholar 

  • Mørk EK (2011) Disease resistance in ornamental plants—transformation of Symphyotrichum novi-belgii with powdery mildew resistance genes. Ph.D. Thesis, Department of Food Science, Aarhus University, p 107

  • Mujahid TY, Siddiqui K, Ahmed R, Kazmi SU, Ahmed N (2014) Isolation and partial characterization of phosphate solubilizing bacteria isolated from soil and marine samples. Pak J Pharm Sci 27:1483–1490

    PubMed  Google Scholar 

  • Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2:606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nabti E, Bensidhoum L, Tabli N, Dahel D, Weiss A, Rothballer M, Schmid M, Hartman A (2014) Growth inhibition of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium isolated from salt affected rhizosphere soil in northwestern Algeria. Eur J Soil Biol 61:20–26

    Article  CAS  Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81

    Article  CAS  PubMed  Google Scholar 

  • Naqvi SDY, Ahmad S (2012) Effect of Pseudomonas fluorescens on Fusarium oxysporum f. sp. gladioli causing corm rot disease of gladiolus. J Stored Prod Postharvest Res 3:49–51

    Google Scholar 

  • Nath R, Sharma GD, Barooah M (2012) Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). Eur J Exp Biol 2:1354–1358

    CAS  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir-pine. Crop Protec 29:1142–1147

    Article  Google Scholar 

  • Noori MSS, Saud HM (2012) Potential plant growth-promoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microb 3:120

    CAS  Google Scholar 

  • Norrish K, Rosser H (1983) Mineral phosphate. Soils: an Australian viewpoint. Sponsored by the Division of Soils, Commonwealth Scientific and Industrial Research Organization. Academic Press, Melbourne, CSIRO/London, UK/Australia, pp 335–361

  • Onyia CE, Anyanwu CU (2013) Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from Nsukka pepper plant rhizosphere and root free soil. J Yeast Fungal Res 4:52–57

    CAS  Google Scholar 

  • Orberá TM, Serrat MJ, Ortega E (2014) Potential applications of Bacillus subtilis strain SR/B-16 for the control of phytopathogenic fungi in economically relevant crops. Biotecnol Apl 31:13–17

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppressio of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Pandhare KS, Deshmukh M, Rathod NG, Padgilwar T (2009) Effect of bioinoculants with reduced doses of inorganic fertilizers on flower quality and yield of tuberose. J Plant Dis Sci 4:84–87

    Google Scholar 

  • Panhwar QA, Othman R, Rahman ZA, Meon S, Ismail MR (2012) Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. Afr J Biotechnol 11:2711–2719

    CAS  Google Scholar 

  • Panhwar QA, Naher UA, Jusop S, Othman R, Latif MA, Ismail MR (2014) Biochemical and molecular characterization of potential phosphate solubilizing bacteria in acid sulphate soils and their beneficial effects on rice growth. PLoS One 9(10):PMC4186749

    Article  CAS  Google Scholar 

  • Parthasarathy VA, Nagaraju V (1999) In vitro propagation in Gerbera jamesonii Bolus. Ind J Hortic 56:82–85

    Google Scholar 

  • Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate solubilizing bacteria with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. Radicis lycopersici in tomato. Biol Control 67:284–291

    Article  CAS  Google Scholar 

  • Prasad K, Aggarwal A, Yadav K, Tanwar A (2012) Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. J Soil Sci Plant Nutr 12:451–462

    Google Scholar 

  • Preethi TL, Pappiah CM, Anbu S (1999) Studies on the effect of Azospirillum sp., nitrogen and ascorbic acid on the growth and flowering of Edward rose (Rosa bourboniana Desp.). J South Ind Hortic 47:106–110

    Google Scholar 

  • Priya S, Pannerselvan T, Sivakumar T (2013) Evaluation of indole 3-acetic acid in phosphate solubilizing microbes isolated from rhizospheric soil. Int J Curr Microbiol Appl Sci 2:29–36

    Google Scholar 

  • Promwee A, Montree I, Warin I, Chiradej C, Punnawich Y (2014) Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. J Agric Sci 6:8–20

    Google Scholar 

  • Qasim M, Younis A, Zahir ZA, Riaz A, Raza H, Tariq U (2014) Microbial inoculation increases the nutrient uptake efficiency for quality production of Gladiolus grandiflorus. Pak J Agric Sci 51:875–880

    Google Scholar 

  • Qiao ZW, Hong JP, Xie YH, Li LX (2013) Screening, identification and phosphate-solubilizing characteristics of Rahnella sp. phosphate-solubilizing bacteria in calcareous soil. Ying Yong Sheng Tai Xue Bao 24:2294–2300

    CAS  PubMed  Google Scholar 

  • Quadt-Hallmann A, Benhamou AN, Kleopper JW (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Ann Rev Phytopathol 50:403–424

    Article  CAS  Google Scholar 

  • Raissi A, Galavi M, Zafaraneieh M, Soluki M, Mousavi SR (2013) Biochemical change of seeds and yield of isabgol (Plantago ovata) under bio-fertilizer, organic manure and chemical fertilizer. Bull Environ Pharmacol Life Sci 2:112–117

    Google Scholar 

  • Rajesh B, Sandeep D, Dhiman SR, Ritu J (2006) Effect of biofertilizers and biostimulants on growth and flowering in standard carnation (Dianthus Caryophyllus Linn.). J Ornam Hortic 9:282–284

    Google Scholar 

  • Ramlakshmi R, Bharathiraja S (2015) AM fungi and phosphate solubilizing bacteria (Paenibacillus polymyxa) as a potential bioinoculant for marigold. Intern J Curr Res 7:12264–12266

    Google Scholar 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24

    CAS  Google Scholar 

  • Raval AA, Desai PB (2012) Rhizobacteria from rhizosphere of sunflower (Helianthus annuus L.) and their effect on plant growth. Res J Recent Sci 1:58–61

    Google Scholar 

  • Read DJ (1998) Mycorrhizas and nutrient cycling in sand dune ecosystems. In: Gimmingham CH, Ritchie W, Willetts BB, Willis AJ (eds) Coastal sand dunes, vol 96. The Royal Society of Edinburgh, Edinburgh, pp 89–110

    Google Scholar 

  • Reena TD, Deepthi H, Pravitha MS, Lecturer D (2013) Isolation of phosphate solubilizing bacteria and fungi from rhizospheres soil from banana plants and its effect on the growth of Amaranthus cruentus L. IOSR J Pharmacy Biol Sci 5:06–11

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trend Microbiol 6:139–144

    Article  CAS  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martínez-Toledo V, González-López J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  CAS  PubMed  Google Scholar 

  • Riaz T, Khan SN, Javid A (2007) Scenario of gladiolus production in Punjab, Pakistan. Pak J Bot 39:2389–2393

    Google Scholar 

  • Riaz T, Salik NW, Arshad J (2009) Effect of co-cultivation and crop rotation on corm rot disease of gladiolus. Sci Hortic 12:218–222

    Article  Google Scholar 

  • Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:E1001000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruangsanka S (2014) Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. ScienceAsia 40:16–20

    Article  Google Scholar 

  • Sachin DN, Misra P (2009) Effect of Azotobacter chroococcum (PGPR) on the growth of bamboo (Bambusa bamboo) and maize (Zea mays). Plants Biofront 1:37–46

    Google Scholar 

  • Saif S, Khan MS, Zaidi A, Ahmad E (2014) Role of phosphate solubilizing actinomycetes in plant growth promotion: current perspective. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilising microorganisms: principles and application of Microphos Technology. Springer, Switzerland, pp 137–156

    Google Scholar 

  • Sajjad Y, Jaskani MJ, Ashraf MY, Qasim M, Ahmad R (2014) Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus “White Prosperity”. Pak J Agric Sci 51:123–129

    Google Scholar 

  • Sakiyama CCH, Paula EM, Pereira PC, Borges AC, Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121

    Article  CAS  PubMed  Google Scholar 

  • Salma Z, Sindhu SS, Ahlawat VP (2014) Suppression of Fusarium wilt disease in gladiolus by using rhizobacterial strains. J Crop Weed 10:466–471

    Google Scholar 

  • Sarabhoy AK, Agarwal DK (1983) Two new diseases of ornamental plants: Fusarium rot and Mamnalaria species. Curr Sci 52:821–822

    Google Scholar 

  • Sarkar A, Islam T, Biswas GC, Alam S, Hossain M, Talukder NM (2012) Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta Microbiol Immunol Hung 59:199–213

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Mesa MP, Mónica ID, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763

    Article  CAS  Google Scholar 

  • Schippers BA, Bakker W, Bakker AHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practice. Ann Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM, Van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    Article  CAS  Google Scholar 

  • Shanmugam V, Sharma V (2008) Genetic relatedness of Trichoderma isolates antagonistic against Fusarium oxysporum f. sp. dianthi inflicting carnation wilt. Folia Microbiol 53:130–138

    Article  CAS  Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Protec 30:807–813

    Article  Google Scholar 

  • Sharma AK (2002) Bio-fertilizers for sustainable agriculture. Agrobios India, Jodhpur, p 407

    Google Scholar 

  • Sharma SN, Chandel SS (2006) Biological control of gladiolus wilt caused by Fusarium oxysporum f. sp. gladioli. Indian J Plant Pathol 34:345–347

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sharma SN, Chandel S, Tomar M (2005) Integrated management of Fusarium yellows of gladioli Snyder and Hans under polyhouse conditions. In: Sharma RC, Sharma JN (eds) Integrated plant disease management. Scientific Publishers, Jodhpur, pp 221–229

    Google Scholar 

  • Sharma BC, Subba R, Saha A (2012) In vitro solubilization of tricalcium phosphate and production of IAA by phosphate solubilizing bacteria isolated from tea rhizosphere of Darjeeling Himalaya. Plant Sci Feed 2:96–99

    Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    Article  CAS  PubMed  Google Scholar 

  • Singh AK (2007) Response of integrated nutrient management on growth and flowering attributes in rose. J Ornam Hortic 10:58–60

    Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Article  Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from paddy rhizosphere soil of Cuddalore District, Tamil Nadu, India. Intern J Microbiol Res 4:227–233

    CAS  Google Scholar 

  • Sohan BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, Cho JS, Kim T, Lee JH (2003) Effect of different timing of AMF inoculation on plant growth and flower quality of Chrysanthemum. Sci Hortic 98:173–183

    Article  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA 23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Sowmya DS, Rao MS (2012) Combined effect of Pseudomonas putida and Paecilomyces lilacinus in the management of disease complex in Gladiolus grandiflorus L. Pest Manag Hortic Ecosys 18:204–209

    Google Scholar 

  • Srivastava R, Govil M (2005) Influence of biofertilizers on growth and flowering in gladiolus cv. American Beauty, ISHS Acta Hortic 742: Intern Conf Exhib Soil less Culture (ICESC)

  • Srivastava R, Govil M (2007) Influence of biofertilizers on growth and flowering in gladiolus cv. American beauty. Acta Hortic (ISHS) 742:183–188

    Article  Google Scholar 

  • Srivastava R, Preetham SP, Chand S (2014) Effect of organic manures and biofertilizers on vegetative, floral and post harves attributes in tuberose (Polianthes tuberosa) var Shringar. Asian J Biol Life Sci 3:6–9

    Google Scholar 

  • Stephen J, Jisha MS (2011) Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderia sp. (MTCC 8369). J Trop Agric 49:99–103

    CAS  Google Scholar 

  • Surapat W, Pukahuta C, Rattanachaikunsopon P, Aimi T, Boonlue S (2013) Characteristics of phosphate solubilization by phosphate-solubilizing bacteria isolated from agricultural chili soil and their efficiency on the growth of chili (Capsicum frutescens L. cv. Hua Rua). Chiang Mai J Sci 40:11–25

    CAS  Google Scholar 

  • Susilowati LE, Syekhfani (2014) Characterization of phosphate solubilizing bacteria isolated from Pb contaminated soils and their potential for dissolving tricalcium phosphate. J Degrad Min Lands Manag 1:57–62

    Google Scholar 

  • Taher T, Golchin A, Shafiei S, Sayfzadeh S (2013) Effect of nitrogen and phosphate solubilizing bacteria on growth and quantitative traits of tuberose (Polianthes tuberose L.). J Sci Technol Greenh Cult 4:50

    Google Scholar 

  • Tahir M, Mirza MS, Zaheer A, Dimitrov MR, Smidt H, Hameed S (2013) Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.). Aust J Crop Sci 7:1284–1292

    Google Scholar 

  • Tallapragada P, Usha S (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Tandon RN, Bhargava SN (1963) Fusarium rot of gladiolus. Curr Sci 32:377

    Google Scholar 

  • Tanwar A, Yadav K, Prasad K, Aggarwal A (2013) Biological amendments of growth, nutritional quality and yield of celery. Int J Veg Sci 19:228–239

    Article  Google Scholar 

  • Tomar M (1997) Studies on the management of gladiolus yellows caused by Fusarium species. M.Sc. Thesis, Dr. Y. S Parmar University of Horticulture and Forestry. Nauni, Solan Himachal Pradesh India, p 43

  • Torkashvand M (2009) General pedology. Islamic Azad University, Iran, p 288

    Google Scholar 

  • Trujillo ME, Velázquez E, Miguélez S, Jiménez MS, Mateos PF, Martínez-Molina E (2007) Characterization of a strain of Pseudomonas fluorescens that solubilizes phosphates in vitro and produces high antibiotic activity against several microorganisms. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, The Netherlands, pp 265–268

    Chapter  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P (1984) Evaluation of phosphorous solubilization by microorganisms isolated from aridisols. J Ind Soc Soil Sc 32:273–277

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as bio-fertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walpola BC, Yoon MH (2013a) In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. Afr J Microbiol Res 7:3534–3541

    Google Scholar 

  • Walpola C, Yoon MH (2013b) Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7:266–275

    CAS  Google Scholar 

  • Wange SS, Patil PL (2007) Response of tuberose to bio-fertilizers and nitrogen. Maharashtra J Agric Univ 19:484–485

    Google Scholar 

  • Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotech 159:330–342

    Article  CAS  Google Scholar 

  • Ruchi, Kapoor R, Kumar A, Kumar A, Patil S, Thapa S, Kaur M (2012) Evaluation of plant growth promoting attributes and lytic enzyme production by fluorescent Pseudomonas diversity associated with apple and pear. Intern J Sci Res Pub 2:2250–3153

    Google Scholar 

  • Yadav BK, Tarafdar JC (2011) Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Res Manag 25:87–99

    Article  CAS  Google Scholar 

  • Yadav J, Verma JP, Tiwari KN (2011) Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Bio Sci 4:291–299

    Article  Google Scholar 

  • Yang S, Zhang X, Cao Z, Zhao K, Wang S, Chen M, Hu X (2014) Growth promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microb Biotechnol 7:611–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasser MM, Ahmad SM, Mousa ONM, Siada HN (2014) Solubilization of inorganic phosphate by phosphate solubilizing fungi isolated from Egyptian soils. J Biol Earth Sci 4:B83–B90

    Google Scholar 

  • Younis A, Riaz A, Ikram S, Nawaz T, Hameed M, Fatima S, Batool R, Ahmad F (2013) Salinity-induced structural and functional changes in three cultivars of Alternanthra bettzikiana (Regel) G. Nicholson. Turk J Agric For 37:674–687

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS (2014) Role of phosphate solubilizing microbes in the management of plant diseases. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilising microorganisms: principles and application of Microphos echnology. Springer, Switzerland, pp 225–256

    Google Scholar 

  • Zaredost F, Davood H, Maryam BZ, Ali MT, Behzad K, Maryam JS, Mohammad Z (2014) The effect of phosphate bio-fertilizer (Barvar-2) on the growth of marigold. J Environ Biol 35:439–443

    PubMed  Google Scholar 

  • Zawadzka M, Trzciński P, Nowak K, Orlikowska T (2013) The impact of three bacteria isolated from contaminated plant cultures on in vitro multiplication and rooting of microshoots of four ornamental plants. J Hortic Res 21:41–51

    Article  Google Scholar 

  • Zhao K, Penttinen P, Zhang X, Ao X, Liu M, Yu X, Chen Q (2014a) Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res 169:76–82

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Wang F, Zhao J (2014b) Identification and functional characteristics of chlorpyrifos-degrading and plant growth promoting bacterium Acinetobacter calcoaceticus. J Basic Microbiol 54:457–463

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Saghir Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, A., Khan, M.S., Ahmad, E. et al. Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective. Acta Physiol Plant 38, 117 (2016). https://doi.org/10.1007/s11738-016-2133-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2133-7

Keywords

Navigation