Skip to main content

Advertisement

Log in

Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The plant growth promoting bacteria can ameliorate the abiotic stressors through induced systemic tolerance in associated plants. The present work reports the efficiency of a plant growth promoting rhizobacterium (PGPR) Enterobacter sp. SBP-6 containing ACCD activity to stimulate the growth of the wheat plant under salinity stress conditions. Besides ACCD activity, the isolate was able to show other plant growth promoting (PGP) traits like phosphate solubilization, phytohormone production, nitrogen fixation, etc. The application of isolate SBP-6 to the wheat plants alleviated the inhibitory effects of gradient levels of salinity (150, 175, 200 mM NaCl) on various parameters of plant growth and photosynthetic pigments. Results of pot experiments revealed that inoculation with the test isolate significantly increased the plant biomass by 10–42 % as compared to their respective uninoculated control. An ability of the isolate to alleviate the effect of salt stress was also evident by significant increase of chlorophyll content (33–41 %), reduction in toxic Na+ ionic content (19–41 %), increase in K+ uptake (23–31 %), thereby favoring the K+/Na+ ratio and a significant decrease in leaf proline and malondialdehyde content in bacteria-treated plants exposed to salt stress. These results indicated that the selected isolate SBP-6 can be used for promoting the plant growth under salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic press, San Diego

    Google Scholar 

  • Ait Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmansstrain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez Cadenas A (2008) Antioxidant enzymatic activity is linked to water-logging stress tolerance in citrus. Physiol Plantarum 132:452–466

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedlings with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fert Soil 40:157–162

    CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during water-logging stress via reduced ethylene generation. J Plant Physiol 58:227–235

    Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (1992) Biochemical activities of microorganisms. In: Microbiology, A Laboratory Manual. The Benjamin/Cummings Publishing Co. California, USA

  • Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248

    Article  CAS  Google Scholar 

  • Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M (2007) Identification and functional characterization of cation-chloride co-transporters in plants. Plant J 50:278–292

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat xLophopyrum elongatum (Host) A. Love amphiploid. Plant Physiol 108:1715–1724

    CAS  PubMed  Google Scholar 

  • Connelly MB, Young GM, Sloma A (2004) Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol 186:4159–4167

    Article  CAS  PubMed  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megìas M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • De Zelicourta A, Al-Yousif M, Hirta H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  Google Scholar 

  • Diagne N, Thioulouse J, Sanguin H, Prin Y, Krasova-Wade T, Sylla S (2013) Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biol Biochem 57:468–476

    Article  CAS  Google Scholar 

  • Dobereiner J (1995) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nanniperi P (eds), Methods Appl. Soil Microbiol. Biochem. Academic press, London, pp 134–141

  • Duxbury AC, Yentsch CS (1956) Plankton pigment monographs. J Marine Res 15:91–101

    Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • El-Komy MH, Hamdia MA, Abd El-Baki GK (2003) Nitrate reductase in wheat plants grown under salinity and inoculated with Azospirillum spp. Biol Plant 46:281–287

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieve CM, Poss JP (2000) Wheat response to interactive effects of boron and salinity. J Plant Nutr 23:1217–1226

    Article  CAS  Google Scholar 

  • Hamdia MA, Shaddad MAK, Doaa MM (2004) Mechanism of salt tolerance and interactive effect of Azospirillum bransilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil stress. Res J Agri Biol Sci 1:210–215

    Google Scholar 

  • Hincha DK, Zuther E, Heyer AG (2003) The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochim Biophys Acta (BBA) Biomemb 1612:172–177

  • Hoagland DR, Boyer TC (1936) General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol 11:471–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acidreactive-substances assay for estimating lipid peroxidation in plant tissue containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of Indian Private Limited, New Delhi

    Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • James RA, Rivelli AR, Munns R, Caemmerer SV (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403

    Article  CAS  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD, Wolf O (1988) External potassium is not required for root growth in saline conditions: experiments with Ricinus communis L. growth in a reciprocal split-root system. J Exp Bot 39:1149–1167

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Jha CK, Annapurna K, Saraf M (2012) Isolation of Rhizobacteria from Jatropha curcas and characterization of produced ACC deaminase. J Basic Microbiol 52:85–95

    Article  Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage 22:298–304

    Article  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (1995) NaCl stress in rice seedlings: Starch mobilization and the influence of gibberellic acid on seedling growth. Bot Bull Acad Sin 36:169–173

    CAS  Google Scholar 

  • Liu W, Hou J, Wang Q, Ding L, Luo Y (2014) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117:303–308

    Article  CAS  PubMed  Google Scholar 

  • Mayak S et al (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Millar RL, Higgins VJ (1970) Association of cyanide with infection of Birdsfoot trefoil by Stemphylium loti. Phytopathol 60:104–110

    Article  CAS  Google Scholar 

  • Munns R, Termatt A (1986) Whole-plant response to salinity. Aus J Plant Physiol 20:425–437

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Nadeem M, Arshad M (2009) Rhizobacteria containing ACC deaminase confer salt tolerance in maize grown on salt affected soils. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2010) Rhizobacteria capable of producing ACC deaminase may mitigate salt stress in wheat. Soil Sci Asoc Am J 74:533–542

    Article  Google Scholar 

  • Noreen S, Ali B, Hasnain S (2012) Growth promotion of Vigna mungo (L.) by Pseudomonas sp. exhibiting auxin production and ACC-deaminase activity. Ann Microbiol 62:411–417

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939 US Department of Agriculture, Washington DC, USA

  • Palaniyandi et al (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plantarum 118:10–15

    Article  CAS  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant-associated bacteria. In: Gnanamanickam SS (ed) Plant growth promoting rhizobacteria. Springer, Amsterdam, pp 195–230

    Google Scholar 

  • Pollard A, Wyn Jones RG (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144:291–298

    Article  CAS  PubMed  Google Scholar 

  • Prescott L, Harley J (2002) Laboratory Exercises in Microbiology, 5th ed. McGraw-Hill, Boston, MA

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer-Plus 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Plant growth promoting traits in Enterobacter cloaceae MDSR9 isolated from soyabean rhizosphere and its impact on growth and nutrition of soyabean and wheat upon inoculation. Agricultural Research 3:53–66

    Article  CAS  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasure VM, Dahavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Ind J Exp Biol 47:993–1000

    CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:LSMR-21

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol 47:698–705

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas Xuorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Schillinger U, Lucke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Tipayno SC, Kim K, Chung JB, Sa T (2011) Influence of varying degree of salinity-sodicity stress on enzyme activities and bacterial populations of coastal soils of Yellow Sea, South Korea. J Microbiol Biotechnol 21:341–346

    CAS  PubMed  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant growth promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6:molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Munns R (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  Google Scholar 

  • Tittabutr P, Piromyou P, Longtonglang A, Noisa-Ngiam R, Boonkerd N, Teaumroong N (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571

    Article  CAS  Google Scholar 

  • TurkanI Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Veerubommu S, Kanoujia N (2011) Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol Control 57:85–93

    Article  Google Scholar 

  • Walkey AE, Black JA (1934) An examination of the Degtiga Vett. Method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci 37:29

    Article  Google Scholar 

  • Wang LW, Showalter AM, Ungar IA (2005) Effects of intraspecific competition on growth and photosynthesis of Atriplex prostrata. Aquat Bot 83:187–192

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Taylor AG, Spittler TD (2006) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hortic 111:1–6

    Article  CAS  Google Scholar 

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Rosenhouse-Dantsker A, Tang QY, Noskov S, Logothetis DE (2010) The RCK2 domain uses a coordination site present in Kir channels to confer sodium sensitivity to Slo2.2 channels. J Neurosci 30:7554–7562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Department of Biotechnology (File No. BT/PR14527/AGR/21/326/2010), Govt. of India, New Delhi to PNJ for their support by providing the fund for carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Nath Jha.

Additional information

Communicated by MJ Reigosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.P., Jha, P.N. Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor . Acta Physiol Plant 38, 110 (2016). https://doi.org/10.1007/s11738-016-2123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2123-9

Keywords

Navigation