Skip to main content
Log in

Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Photosystem II (PSII) plays an especially important role in the photosynthetic response of higher plants to environmental perturbations and stresses. In this study, a pot experiment was conducted to investigate the differences in the photochemical efficiency and activity of PSII between Bothriochloa ischaemum and Lespedeza davurica in mixtures under three soil water regimes [80 ± 5 % FC (field capacity) (HW), 60 ± 5 % FC (MW) and 40 ± 5 % FC (LW)]. The maximum PSII quantum yield (F v/F m), non-photochemical quenching (NPQ), photochemical quenching (qP) and rapid light curve-derived parameters (rETRmax, maximum relative electron transport rate; I k, minimum saturating irradiance; α, initial slope of the curve) of each species were investigated during the heading period (HP), flowering period (FP) and mature period (MP). The results showed that under HW and MW regimes, the averaged F v/F m values of B. ischaemum in mixtures at the HP were significantly higher than in monoculture, and the mean rETRmax values of B. ischaemum during the HP and FP in mixtures were significantly higher than in monoculture. F v/F m values of B. ischaemum in the HP were significantly lower than in the other two growth periods under LW regime. During the MP, the averaged F v/F m values of L. davurica in mixtures were significantly higher than in monoculture under the HW regime, and the mean rETRmax values of L. davurica in mixtures were significantly higher than in monoculture under each water regime. In the same mixture ratio, NPQ values of B. ischaemum were significantly higher than those of L. davurica, but the rETRmax and I k values of B. ischaemum were significantly lower than those of L. davurica under each water regime. The results indicated that application of mixture planting enhanced the photosynthetic performance of both species depending on the developmental stage of the individual plant. B. ischaemum showed the maximal photosynthetic performance in the HP and FP while L. davurica in the MP under both sufficient water supply and water stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

α:

Initial slope of the curve

I k :

Minimum saturating irradiance

FC:

Field capacity

F m :

Maximal fluorescence yield

F o :

Minimal fluorescence yield

F v/F m :

Maximum PSII quantum yield

NPQ:

Non-photochemical quenching

PSII:

Photosystem II

qP:

Photochemical quenching

rETRmax :

Maximum relative electron transport rate

ΦPSII :

Effective quantum yield of PSII

References

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. doi:10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plantarum 81:563–570. doi:10.1111/j.1399-3054.1991.tb05101.x

    Article  CAS  Google Scholar 

  • Balaguer L, Pugnaire FI, Martínez-Ferri E, Armas C, Valladares F, Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant Soil 240:343–352. doi:10.1023/a:1015745118689

    Article  CAS  Google Scholar 

  • Barker DH, Adams WW, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert. Plant Cell Environ 25:95–103. doi:10.1046/j.0016-8025.2001.00803.x

    Article  CAS  Google Scholar 

  • Barron-Gafford GA, Angert AL, Venable DL, Tyler AP, Gerst KL, Huxman TE (2013) Photosynthetic temperature responses of co-occurring desert winter annuals with contrasting resource-use efficiencies and different temporal patterns of resource utilization may allow for species coexistence. J Arid Environ 91:95–103. doi:10.1016/j.jaridenv.2012.12.006

    Article  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514. doi:101146/annurevpp45060194003221

    Article  Google Scholar 

  • Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253. doi:10.1007/s00442-004-1551-1

    Article  PubMed  Google Scholar 

  • Christen D, Schönmann S, Jermini M, Strasser RJ, Défago G (2007) Characterization and early detection of grapevine (Vitis vinifera) tress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514. doi:10.1016/j.envexpbot.2007.02.003

    Article  CAS  Google Scholar 

  • Colom MR, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ Exp Bot 49:135–144. doi:10.1016/s0098-8472(02)00065-5

    Article  CAS  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894. doi:10.1093/aob/mcf064

    Article  CAS  PubMed  Google Scholar 

  • Cornic G, Massacci A (2004) Leaf photosynthesis under drought stress. Photosynthesis and the environment. Springer, The Netherlands, pp 347–366

    Chapter  Google Scholar 

  • Dijkstra FA, Blumenthal D, Morgan JA, LeCain DR, Follett RF (2010) Elevated CO2 effects on semi-arid grassland plants in relation to water availability and competition. Funct Ecol 24:1152–1161. doi:10.1111/j.1365-2435.2010.01717.x

    Article  Google Scholar 

  • Duan DP, Xu BC, Niu FR, Xu WZ (2012) Effects of water and phosphorus on chlorophyll fluorescence characteristics of different position leaves in Lespedeza daurica. Pratac Sci 29:422–428 (in Chinese)

    CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subjects 990:87–92. doi:10.1016/s0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Griffiths H, Parry MAJ (2002) Plant responses to water stress. Ann Bot 89:801–802. doi:10.1093/aob/mcf159

    Article  PubMed  Google Scholar 

  • Grzesiak MT (2009) Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root 3:10–16. doi:10.3117/plantroot.3.10

    Article  CAS  Google Scholar 

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. The ecology and silviculture of mixed-species forests. Springer, The Netherlands, pp 125–141

    Chapter  Google Scholar 

  • Kemp PR, Williams GJ III (1980) A physiological basis for niche separation between Agropyron Smithii (C3) and Bouteloua Gracilis (C4). Ecology 61:846–858. doi:10.2307/1936755

    Article  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plantarum 86:180–187. doi:10.1111/j.1399-3054.1992.tb01328.x

    Article  CAS  Google Scholar 

  • Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. BBA-Bioenergetics 1817:760–769. doi:10.1016/j.bbabio.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  • Lei YB, Yin CY, Li CY (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plantarum 127:182–191. doi:10.1111/j.1399-3054.2006.00638.x

    Article  CAS  Google Scholar 

  • Li CY, Wang KY (2003) Differences in drought responses of three contrasting Eucalyptus microtheca F Muell. populations. For Ecol Manag 179:377–385. doi:10.1016/s0378-1127(02)00552-2

    Article  Google Scholar 

  • Liu WJ, Yuan S, Zhang NH, Lei T, Duan HG, Liang HG, Lin HH (2006) Effect of water stress on photosystem 2 in two wheat cultivars. Biol Plantarum 50:597–602. doi:10.1007/s10535-006-0094-1

    Article  CAS  Google Scholar 

  • Liu CC, Liu YG, Guo K, Fan DY, Li GQ, Zheng YR, Yu LF, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183. doi:10.1016/j.envexpbot.2010.11.012

    Article  CAS  Google Scholar 

  • Lu CM, Zhang JH (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206. doi:10.1093/jxb/50.336.1199

    Article  CAS  Google Scholar 

  • Maricle BR, Adler PB (2011) Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ Exp Bot 72:223–231. doi:10.1016/j.envexpbot.2011.03.011

    Article  Google Scholar 

  • Ogaya R, Penuelas J, Asensio D, Llusià J (2011) Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ Exp Bot 73:89–93. doi:10.1016/j.envexpbot.2011.08.004

    Article  CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plantarum 137:188–199. doi:10.1111/j.1399-3054.2009.01273.x

    Article  CAS  Google Scholar 

  • Pearcy RW, Tumosa N, Williams K (1981) Relationships between growth, photosynthesis and competitive interactions for a C3 and C4 plant. Oecologia 48:371–376. doi:10.1007/bf00346497

    Article  Google Scholar 

  • Platt T, Harrison WG, Irwin B, Horne EP, Gallegos CL (1982) Photosynthesis and photoadaptation of marine phytoplankton in the Arctic. Deep-Sea Res 29:1159–1170. doi:10.1016/0198-0149(82)90087-5

    Article  CAS  Google Scholar 

  • Porporato A, Daly E, Rodriguez-Iturbe I (2004) Soil water balance and ecosystem response to climate change. Am Nat 164:625–632. doi:10.1086/424970

    Article  PubMed  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237. doi:10.1016/j.aquabot.2005.02.006

    Article  CAS  Google Scholar 

  • Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO Jr (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207. doi:10.1016/s0022-0981(02)00047-3

    Article  CAS  Google Scholar 

  • Robledo D, Freile-Pelegrín Y (2005) Seasonal variation in photosynthesis and biochemical composition of Caulerpa spp. (Bryopsidales, Chlorophyta) from the Gulf of Mexico. Phycologia 44:312–319. doi:10.2216/0031-8884(2005)44[312:svipab]2.0.co;2

    Article  Google Scholar 

  • Ruban AV, Murchie EH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. BBA-Bioenergetics 1817:977–982. doi:10.1016/j.bbabio.2012.03.026

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106. doi:10.1111/j.1365-3040.2007.01682.x

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MDM, Blasco B, Leyva R, Romero L, Ruiz JM (2012) Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci 188:89–96. doi:10.1016/j.plantsci.2011.12.019

    Article  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence. Springer, The Netherlands, pp 279–319

    Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62. doi:10.1007/bf00024185

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Deng XP, Su P, Huang ZB, Zhang SQ, Zhang ZB (2000) Excavating the potentiality of crop drought-resistance and water saving-the adaptability and adjustment of crop to highly variable and low water environment. J Agri Sci Technol 2:66–70 (in Chinese)

    Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003

    Article  Google Scholar 

  • Song R, Zhao CY, Liu J, Zhang J, Du YX, Li JZ, Sun HZ, Zhao HB, Zhao QZ (2013) Effect of sulphate nutrition on arsenic translocation and photosynthesis of rice seedlings. Acta Physiol Plant 35:3237–3243. doi:10.1007/s11738-013-1358-y

    Article  CAS  Google Scholar 

  • Szota C, Farrell C, Koch JM, Lambers H, Veneklaas EJ (2011) Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. Tree Physiol 31:1052–1066. doi:10.1093/treephys/tpr085

    Article  CAS  PubMed  Google Scholar 

  • Terzi R, Saglam A, Kutlu N, Nar H, Kadioglu A (2010) Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turk J Bot 34:1–10. doi:10.3906/bot-0905-20

    CAS  Google Scholar 

  • Throop HL, Reichmann LG, Sala OE, Archer SR (2012) Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert Grassland. Oecologia 169:373–383. doi:10.1007/s00442-011-2217-4

    Article  PubMed  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92. doi:10.1890/12-1706.1

    Article  Google Scholar 

  • Wang J, Xu BC, Gao ZJ, Duan DP, Niu FR, Xu WZ (2012) Photosynthetic diurnal changes of Bothriochloa ischaemum mixed sowing with Lespedeza davurica in loess hill-gully region. Acta Agrestia Sin 20:693–698 (in Chinese)

    Google Scholar 

  • Whitmarsh J (1999) The photosynthetic process. Concepts in photobiology. Springer, The Netherlands, pp 11–51

    Chapter  Google Scholar 

  • Wilsey BJ (2010) Productivity and subordinate species response to dominant grass species and seed source during restoration. Restor Ecol 18:628–637. doi:10.1111/j.1526-100x.2008.00471.x

    Article  Google Scholar 

  • Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27–42. doi:10.1186/1746-4811-4-27

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu BC, Shan L, Li FM (2007) Comparison of ecophysiological characteristics of seven plant species in semiarid loess hilly-gully region. Chin J Appl Ecol 18:990–996 (in Chinese)

    CAS  Google Scholar 

  • Xu BC, Xu WZ, Huang J, Shan L, Li FM (2011a) Biomass allocation, relative competitive ability and water use efficiency of two dominant species in semiarid Loess Plateau under water stress. Plant Sci 181:644–665. doi:10.1016/j.plantsci.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Xu BC, Xu WZ, Huang J, Shan L, Li FM (2011b) Biomass production and relative competitiveness of a C3 legume and a C4 grass co-dominant in the semiarid Loess Plateau of China. Plant Soil 347:25–39. doi:10.1007/s11104-011-0724-z

    Article  CAS  Google Scholar 

  • Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol Lett 10:54–62. doi:10.1111/j.1461-0248.2006.00994.x

    Article  PubMed  Google Scholar 

  • Zhang XL, Zang RG, Li CY (2004) Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Sci 166:791–797. doi:10.1016/j.plantsci.2003.11.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation of China (41371509), Programs for New Century Excellent Talents in University (NECT-11-0444), Fundamental Research Funds for the Central Universities (ZD2013020) and “111” Project (B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Cheng Xu.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, WZ., Deng, XP., Xu, BC. et al. Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress. Acta Physiol Plant 36, 1033–1044 (2014). https://doi.org/10.1007/s11738-013-1481-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1481-9

Keywords

Navigation