Skip to main content
Log in

Proteomic analysis of plumules and coleoptiles in maize between hybrids and their corresponding inbred lines

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The plumule and coleoptile influence the emergence and vigor of the seedling and demonstrate distinct heterosis during maize (Zea mays L.) development. Comparative two-dimensional analysis was performed on plumules and coleoptiles from 3.5 days-cultivated seedlings of five widely used hybrids in China and their corresponding parental lines to dissect the genetic mechanism of heterosis. Compared to their parental lines, 64 % (2,127/3,310) of the differentially expressed proteins were nonadditively accumulated in the five hybrids. Up-regulated above the high parent, a similar expression pattern in all five tested hybrids, was the major expression pattern accounting for 68 % (1,446/2,127) nonadditive proteins. Forty-two nonadditive protein spots with significant differences between the hybrids and their parental lines were analyzed by mass spectra. Homology searches separated them into six groups with two abundant functional classes of cell detoxification (33 %) and metabolism (26 %), implying their importance for heterotic manifestation of the different hybrids at 3.5 days-cultivated seedling stage. The differential accumulation and expression of herbicide safener protein 1 in cell detoxification implied that exploration of the molecular mechanism of heterosis should be studied in a systematic network. Four potential functional polymorphisms were identified in SBP1 gene providing possible interpretation for the differential expression of SBP1 at transcriptional and translational levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. The Arabidopsis Book/American Society of Plant Biologists 6

  • Blanchard DJ, Cicek M, Chen J, Esen A (2001) Identification of β-glucosidase aggregating factor (BGAF) and mapping of BGAF binding regions on maize β-glucosidase. J Biol Chem 276:11895–11901

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Jullien M, Grappin P (2001) Functional genomics in the study of seed germination. Genome Biol 3:1002.1001-1002.1005

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cahill DJ, Nordhoff E, O’Brien J, Klose J, Eickhoff H, Lehrach H (2001) Bridging genomics and proteomics. In Proteomics: from protein sequence to function. BIOS Scientific Publishers, Oxford, pp 1–22

    Google Scholar 

  • Cordelia S, Chao Y (2001) Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett 495:1–6

    Article  Google Scholar 

  • Dive D, Gratepanche S, Yera H, Bécuwe P, Daher W, Delplace P, Ödberg-Ferragut C, Capron M, Khalife J (2003) Superoxide dismutase in Plasmodium: a current survey. Redox Rep 8:265–267

    Article  CAS  PubMed  Google Scholar 

  • Erdelska O, Sýkorová B (1997) Somatic embryogenesis of maize hybrids: histological analysis. Biol Plant 39:431–436

    Article  Google Scholar 

  • Finch-Savage W, Rowse H, Dent K (2005) Development of combined imbibition and hydrothermal threshold models to simulate maize (Zea mays) and chickpea (Cicer arietinum) seed germination in variable environments. New Phytol 165:825–838

    Article  CAS  PubMed  Google Scholar 

  • Finnie C, Maeda K, Ostergaard O, Bak-Jensen K, Larsen J, Svensson B (2004) Aspects of the barley seed proteome during development and germination. Biochem Soc Trans 32:517–519

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fu ZY, Jin XN, Ding D, Li YL, Fu ZJ, Tang JH (2011) Proteomic analysis of heterosis during maize seed germination. Proteomics 11:1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinkle PC, Kumar MA, Resetar A, Harris DL (1991) Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30:3576–3582

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho H-P, Hochholdinger F (2008a) Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics 179:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho HP, Nordheim A (2008b) Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics 8:3882–3894

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hopke J, Donath J, Blechert S, Boland W (1994) Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett 352:146–150

    Article  CAS  PubMed  Google Scholar 

  • Howarth CJ, Ougham HJ (1993) Gene expression under temperature stress*. New Phytol 125:1–26

    Article  CAS  Google Scholar 

  • Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–264

    Article  CAS  PubMed  Google Scholar 

  • Jahnke S, Sarholz B, Thiemann A, Kühr V, Gutiérrez-Marcos JF, Geiger HH, Piepho H-P, Scholten S (2010) Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues 6 days after fertilization. Theor Appl Genet 120:389–400

    Article  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Biol 44:283–307

    CAS  Google Scholar 

  • Knappenberger T (2008) Simulation of germination and emergence of corn to gain information for site specific drilling. Bull UASVM, Agric 65:1843–5246

    Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Lu TC, Li HH, Wang HX, Liu GF, Ma L, Yang CP, Wang BC (2010a) Phosphoproteomic identification and phylogenetic analysis of ribosomal P-proteins in Populus dormant terminal buds. Planta 231:571–581

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, von Behrens I, Muthreich N, Schütz W, Nordheim A, Hochholdinger F (2010b) Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Eur J Cell Biol 89:236

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Safdar W, Abbasi BH, Naqvi SS (2010) An overview on the small heat shock proteins. Afr J Biotechnol 9:927–939

    Google Scholar 

  • Martins AM, Mendes P, Cordeiro C, Freire AP (2001) In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. Eur J Biochem 268:3930–3936

    Article  CAS  PubMed  Google Scholar 

  • McDonald MB (2000) Seed priming. Sheffield Academic Press Ltd, Sheffield UK

    Google Scholar 

  • Melchinger A (1999) Genetic diversity and heterosis. The genetics and exploitation of heterosis in crops 99–118

  • Meskauskas A, Russ JR, Dinman JD (2008) Structure/function analysis of yeast ribosomal protein L2. Nucleic Acids Res 36:1826–1835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer S, Pospisil H, Scholten S (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381–391

    Article  CAS  PubMed  Google Scholar 

  • Minarik P, Tomaskova N, Kollarova M, Antalik M (2002) Malate dehydrogenases-structure and function. Gen Physiol Biophys 21:257–266

    CAS  PubMed  Google Scholar 

  • Musrati R, Kollarova M, Mernik N, Mikulasova D (1998) Malate dehydrogenase: distribution, function and properties. Gen Physiol Biophys 17:193–210

    CAS  PubMed  Google Scholar 

  • Muthreich N, Schützenmeister A, Schütz W, Madlung J, Krug K, Nordheim A, Piepho H-P, Hochholdinger F (2010) Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Eur J Cell Biol 89:242

    Article  CAS  PubMed  Google Scholar 

  • Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357:241

    Article  CAS  PubMed  Google Scholar 

  • Paschold A, Marcon C, Hoecker N, Hochholdinger F (2010) Molecular dissection of heterosis manifestation during early maize root development. Theor Appl genet 120:383–388

    Article  PubMed  Google Scholar 

  • Pinthus M, Kimel U (1979) Speed of germination as a criterion of seed vigor in soybeans. Crop Sci 19:291–292

    Article  Google Scholar 

  • Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L, Paszkowski J (1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J 18:490–499

    Article  CAS  PubMed  Google Scholar 

  • Riechers DE, Kreuz K, Zhang Q (2010) Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol 153:3–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, Herrero E (1999) Grx5 Glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19:8180–8190

    PubMed Central  PubMed  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  CAS  PubMed  Google Scholar 

  • Scott-Craig JS, Casida JE, Poduje L, Walton JD (1998) Herbicide safener-binding protein of maize purification, cloning, and expression of an encoding cDNA. Plant Physiol 116:1083–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steeves T (1983) The evolution and biological significance of seeds. Can J Bot 61:3550–3560

    Article  Google Scholar 

  • Sun Y, MacRae T (2005) Small heat shock proteins: molecular structure and chaperone function. CMLS 62:2460–2476

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci 103:6805–6810

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326:1118–1120

    Article  CAS  PubMed  Google Scholar 

  • Szick-Miranda K, Bailey-Serres J (2001) Regulated heterogeneity in 12-kDa P-protein phosphorylation and composition of ribosomes in maize (Zea mays L.). J Biol Chem 276:10921–10928

    Article  CAS  PubMed  Google Scholar 

  • Teng WT, Cao QS, Chen YH, Liu XH, Men SD, Jing XQ, Li JS (2004) Analysis of maize heterotic groups and patterns during past decade in China. Agr Sci China 37:1804–1811

    Google Scholar 

  • Thornalley P (2003) Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Tsaftaris SA (1995) Molecular aspects of heterosis in plants. Physiol Plant 94:362–370

    Article  CAS  Google Scholar 

  • Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heart-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:1360–1385

    Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  PubMed  Google Scholar 

  • Wright P, Noirel J, Ow SY, Fazeli A (2012) A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 77(738–765):e752

    Google Scholar 

  • Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL (2004) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol 134:979–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the grants support from the National Nature Foundation of China (31000715), National Project 973 of China (2012CB723001), the Postdoctoral Foundation of China (20100480852).

Conflict of interest

We (all authors of this paper) declare that there are no financial and commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Tang.

Additional information

Communicated by M. Stobiecki.

Xining Jin and Zhiyuan Fu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 58 kb)

Table S1. The peptides information of identified proteins. The name, sequence, charge, Xcrr, dCN, Sp of peptides corresponding to each protein were listed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Fu, Z., Ding, D. et al. Proteomic analysis of plumules and coleoptiles in maize between hybrids and their corresponding inbred lines. Acta Physiol Plant 36, 355–370 (2014). https://doi.org/10.1007/s11738-013-1417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1417-4

Keywords

Navigation