Skip to main content
Log in

Thellungilla halophila is more adaptive to salinity than Arabidopsis thaliana at stages of seed germination and seedling establishment

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Thellungiella halophila is a salt tolerant relative of Arabidopsis thaliana with high genetic and morphological similarity. In the present study, effects of salinity on germination and seedling growth of T. halophila and A. thaliana were compared. The present results showed that the salinity inhibited seed germination in both species. Unexpectedly, percentages of seed germination in A. thaliana were higher than T. halophila in a range of 0–200 mM NaCl. Seeds of both species could not germinate when the concentration of NaCl was over 200 mM. However, when compared with A. thaliana, seeds of T. halophila did not suffer ion toxicity, as evidenced by the higher final germination rate after ungerminated seeds pretreated with NaCl were transferred to distilled water. Seedlings of T. halophila were more salt tolerant than those of A. thaliana, e.g., seedlings of T. halophila had better plant growth (root length, fresh and dry mass), higher chlorophyll content, less MDA content and higher proline content and K+/Na+ ratio under salinity. These results indicate that T. halophila is more salt tolerant than A. thaliana during both seed germination and seedling stages and explain why A. thaliana is excluded from saline locations and T. halophila can survive in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Azooz M, Shaddad M, Abdel-Latef A (2004) The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J Plant Physiol 9(1):1–8

    CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164(1):77–84

    Article  CAS  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127(4):1354

    Article  PubMed  CAS  Google Scholar 

  • Dodd GL, Donovan LA (1999) Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am J Bot 86(8):1146

    Article  PubMed  CAS  Google Scholar 

  • Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K(+)/Na(+) selectivity and proline accumulation. J Plant Physiol 165(6):588–599

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44(5):826–839

    Article  PubMed  CAS  Google Scholar 

  • Gulzar S, Khan M (2001) Seed germination of a halophytic grass Aeluropus lagopoides. Ann Bot 87(3):319

    Article  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist T, Goodwin S, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith D, Jenks M, Rhodes D, Hasegawa P, Bohnert H, Joly R, Bressan R, Zhu J (2004) Salt cress: a halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135(3):1718–1737

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48(2):181–189

    Article  CAS  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin N (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20(5):463–468

    Article  CAS  Google Scholar 

  • Jaleel C, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73(2):190–195

    Article  Google Scholar 

  • Jamil M, Rha E (2004) The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Korean J Plant Res 7:226–232

    Google Scholar 

  • Jin ZM, Wang CH, Liu ZP, Gong WJ (2007) Physiological and ecological characters studies on aloe vera under soil salinity and seawater irrigation. Process Biochem 42(4):710–714

    Article  CAS  Google Scholar 

  • Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ Exp Bot 54(3):193–201

    Article  CAS  Google Scholar 

  • Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci 169(2):369–373

    Article  CAS  Google Scholar 

  • Keiffer CH, Ungar IA (2002) Germination and establishment of halophytes on brine©\affected soils. J Appl Ecol 39(3):402–415

    Article  CAS  Google Scholar 

  • Khan M, Ungar I (1984) The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. Am J Bot 71(4):481–489

    Article  Google Scholar 

  • Khan M, Ungar I (1996) Influence of salinity and temperature on the germination of Haloxylon recurvum Bunge ex. Boiss Ann Bot 78:547–551

    Article  Google Scholar 

  • Khan M, Ungar I (1997) Effects of thermoperiod on recovery of seed germination of halophytes from saline conditions. Am J Bot 84(2):279–283

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Gul B, Weber D (2004) Temperature and high salinity effects in germinating dimorphic seeds of Atriplex rosea. West N Am Nat 64(2):193–201

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    Article  PubMed  CAS  Google Scholar 

  • Kunert KJ, Ederer M (1985) Leaf aging and lipid peroxidation: the role of the antioxidants vitamin C and E. Physiol Planta 65(1):85–88

    Article  CAS  Google Scholar 

  • McGraw DC, Ungar IA (1981) Growth and survival of the halophyte Salicornia Europaera L. under saline field conditions. Ohio J Sci 81(3):109–113

    Google Scholar 

  • M’Rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaal M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163(10):1022–1031

    Article  PubMed  Google Scholar 

  • Noe G, Zedler J (2000) Differential effects of four abiotic factors on the germination of salt marsh annuals. Am J Bot 87:1679–1682

    Article  PubMed  CAS  Google Scholar 

  • Pujol J, Calvo J, Ramirez-Diaz L (2000) Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot 85(2):279–286

    Article  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Planta 133(4):651–669

    Article  CAS  Google Scholar 

  • Shibli RA, Kushad M, Yousef GG, Lila MA (2007) Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul 51(2):159–169

    Article  CAS  Google Scholar 

  • Singh A, Dubey R (1995) Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl. Photosynthetica 31:489–499

    CAS  Google Scholar 

  • Song J, Feng G, Tian C, Zhang F (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Ann Bot 96(3):399–405

    Article  PubMed  CAS  Google Scholar 

  • Song J, Feng G, Zhang F (2006) Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant Soil 279(1):201–207

    Article  CAS  Google Scholar 

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96(2):261–267

    Article  PubMed  CAS  Google Scholar 

  • Stumpf D, Prisco J, Weeks J, Lindley V, O’Leary J (1986) Salinity and Salicornia bigelovii Torr. seedling establishment. Water relations. J Exp Bot 37(2):160–169

    Article  Google Scholar 

  • Tobe K, Li X, Omasa K (2000) Seed germination and radicle growth of a halophyte, Kalidium caspicum (Chenopodiaceae). Ann Bot 85(3):391–396

    Article  Google Scholar 

  • Ungar I (1978) Halophyte seed germination. Bot Rev 44(2):233–264

    Article  CAS  Google Scholar 

  • Ungar I (1991) Ecophysiology of vascular halophytes. CRC Press, Boca Raton

    Google Scholar 

  • Ungar I (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83(5):604–607

    Article  Google Scholar 

  • Ungar IA, Binet P (1975) Factors influencing seed dormancy in Spergularia media (L.) C. Presl. Aquat Bot 1:45–55

    Article  CAS  Google Scholar 

  • Volkov V, Wang B, Doming P, Fricke W, Amtmann A (2003) Thellungiella halophila, a salt relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14

    Article  Google Scholar 

  • Wang Z, Li P, Fredricksen M, Gong Z, Kim C, Zhang C, Bohnert H, Zhu J, Bressan R, Hasegawa P (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166(3):609–616

    Article  CAS  Google Scholar 

  • Weber E, D’Antonio CM (1999) Germination and growth responses of hybridizing Carpobrotus species (Aizoaceae) from coastal California to soil salinity. Am J Bot 86(9):1257–1263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by the NSFC (National Natural Science Research Foundation of China, Project No. 30870138 and No. 31070158) and key projects in the national science and technology pillar program during the eleventh 5-year plan period (2009BADA7B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan Wang.

Additional information

Communicated by J. van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Jia, W., Song, J. et al. Thellungilla halophila is more adaptive to salinity than Arabidopsis thaliana at stages of seed germination and seedling establishment. Acta Physiol Plant 34, 1287–1294 (2012). https://doi.org/10.1007/s11738-012-0925-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0925-y

Keywords

Navigation