Skip to main content
Log in

Endogenous profiles of indoleamines: serotonin and melatonin in different tissues of Coffea canephora P ex Fr. as analyzed by HPLC and LC-MS-ESI

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Endogenous indoleamine profiles in various ex vitro and in vitro tissues of commercially important Coffea canephora were analyzed by using a high performance liquid chromatography and further confirmed with electrospray ionization mass spectrometry. High content of serotonin (SER) (98.54 ± 5 μg/g) and melatonin (MEL) (115.25 ± 6 μg/g) were found in freshly harvested seeds of C. canephora followed by zygotic embryo (65.25 ± 4 and 96.54 ± 5 μg/g fresh weight) and endosperm (34.08 ± 2 and 51.08 ± 4 μg/g fresh weight) of ripened fruits. Similarly endogenous pools of SER and MEL were moderate in in vitro tissues of C. canephora, i.e. callus (25.85 ± 2 and 75.74 ± 4), somatic embryos (31.88 ± 2 and 19.30 ± 2 μg/g fresh weight) and in vitro regenerated plant stalk (15.78 ± 1 and 38.25 ± 3 μg/g fresh weight), respectively. In view of significant levels of both SER and MEL in various tissues and beans of Coffea, further investigations on their physiological role needs to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

LC-MS-ESI:

Liquid chromatography mass spectrometry electrospray ionization

MS:

Murashige and Skoog

MEL:

Melatonin

SER:

Serotonin

References

  • Bardia F (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food 5:153–157

    Article  Google Scholar 

  • Borah A, Mohanakumar KP (2009) Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental parkinsonism. J Pineal Res 47:293–300

    Article  PubMed  CAS  Google Scholar 

  • Casal S, Oliveira MBPP, Ferreira MA (2002) Determination of biogenic amines in coffee by an optimized liquid chromatographic method. J Liq Chromatogr Relat Techol 25:2535–2549

    Article  CAS  Google Scholar 

  • Fellows LE, Bell EA (1970) 5-Hydroxy-l-tryptophan, 5-hydroxytryptamine and l-tryptophan-5-hydroxylase in Griffonia simplicifolia. Phytochemistry 9:2389–2396

    Article  CAS  Google Scholar 

  • Giridhar P, Indu EP, Kumar V, Chandrashekar A, Ravishankar GA (2004) Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P.Ex.Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26:299–305

    Article  CAS  Google Scholar 

  • Gonzalez-Gomez D, Lozano M, Fernandez-Leon MF, Ayuso MC, Bernalte MJ, Odriguez AB (2009) Detection and quantifcation of melatonin and serotonin in eight sweet Cherry cultivars (Prunus avium L.). Eur Food Res Technol 229:223–229

    Article  CAS  Google Scholar 

  • Hardeland R, Fuhrberg B (1996) Ubiquitous melatonin-presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol 2:25–45

    CAS  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    PubMed  CAS  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Rossoni M, Faoro F (2006) Melatonin content in grape: myth or panacea. J Sci Food Agric 86:1432–1438

    Article  CAS  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007) Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep 26:2009–2015

    Article  PubMed  CAS  Google Scholar 

  • Kele M, Ohmacht R (1996) Determination of serotonin released from coffee wax by liquid chromatography. J Chromatogr A 730:59–62

    Article  PubMed  CAS  Google Scholar 

  • Kolar J, Machackova I, Eder J, Prinsen E, van Dongen W, van Onckelen H, Illnerova H (1997) Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Phytochemistry 44:1407–1413

    Article  CAS  Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi WB (2000) High levels of melatonin in the seeds of edible plants. Possible function in germ tissue protection. Life Sci 67:3023–3029

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Krishna Raj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. CV. Anthos) plants. Plant Cell Rep 19:698–704

    Article  CAS  Google Scholar 

  • Posmyk MM, Janas KM (2009) Melatonin in plants. Acta Physiol Plant 31:1–11

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2009) Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L. Plant Signal Behav 12:1136–1141

    Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2011a) Phytoserotonin: a review. Plant Signal Behav 6:800–809

    Article  PubMed  Google Scholar 

  • Ramakrishna A, Dayananda C, Giridhar P, Rajasekaran T, Ravishankar GA (2011b) Photoperiod influences endogenous indoleamines in cultured green alga Dunaliella bardawil. Indian J Exp Biol 49:234–240

    PubMed  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2011c) Calcium and calcium ionophore A23187 induce high-frequency somatic embryogenesis in cultured tissues of Coffea canephora P ex Fr. In Vitro Cell Dev Biol—Plant. doi: 10.1007/s11627-011-9372-5

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev 12:151–180

    Article  CAS  Google Scholar 

  • Reiter RJ, Manchester LC, Tan DX (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21:920–924

    Article  PubMed  CAS  Google Scholar 

  • Roshchina VV (2001) Neurotransmitters in plant life. Science Publishers, Enfield, pp 4–81

    Google Scholar 

  • Sridevi V, Giridhar P, Ravishankar GA (2009) Endogenous polyamine profiles in different tissues of Coffea sp., and their levels during the ontogeny of fruits. Acta Physiol Plant 31:757–764

    Article  CAS  Google Scholar 

  • Strance A (1997) Astra—a natural coffee with a reduced irritant content. Przemysl spozywezy 47:76–77

    Google Scholar 

  • van Boxtel J, Berthouly M (1996) High frequency somatic embryogenesis from Coffee leaves: factors influencing embryogenesis and subsequent proliferation and regeneration in liquid medium. Plant Cell Tissue Organ Cult 44:7–17

    Article  Google Scholar 

  • Van Tassel DL, O’Neill SD (2001) Putative regulatory molecules in plants: evaluating melatonin. J Pineal Res 31:1–7

    Google Scholar 

  • Veenstra-VanderWeele J, Anderson GM, Cook EH (2000) Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharm 410:165–181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Science and Technology, Government of India, New Delhi for financial assistance. RA acknowledges CSIR, New Delhi for awarding Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokare Aswathanarayana Ravishankar.

Additional information

Communicated by J. Van Huylenbroeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishna, A., Giridhar, P., Sankar, K.U. et al. Endogenous profiles of indoleamines: serotonin and melatonin in different tissues of Coffea canephora P ex Fr. as analyzed by HPLC and LC-MS-ESI. Acta Physiol Plant 34, 393–396 (2012). https://doi.org/10.1007/s11738-011-0829-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0829-2

Keywords

Navigation