Skip to main content
Log in

Identification of sequences expressed during compatible black pepper—Fusarium solani f. sp. piperis interaction

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Black pepper (Piper nigrum L.) is one of the most widely used spices in the world. Root rot disease is induced by Fusarium solani f. sp. piperis and causes severe yield losses of this crop in the Amazon region. In this work we used the suppression subtractive hybridization to identify differentially expressed sequences in roots of black pepper infected by F. solani f. sp. piperis. Sequences coding for putative proteins related to oxidative burst and defense response, such as superoxide dismutase, cytochrome p450, and alpha-amylase inhibitors/lipid transfer protein, comprised 28.4% of SSH clones according to computational analyses. Furthermore, semi-quantitative RT-PCR assays showed accumulation of putative cysteine proteinase inhibitor and pathogenesis-related protein 4 transcripts at late stage of infection that can help to explain the success of this pathogen in causing root rot disease in black pepper. The results obtained here contribute to improve our understanding about this plant–pathogen interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Albuquerque FC, Ferraz S (1976) Características morfológicas e fisiológicas de Nectria haematococca f. sp. piperis e sua patogenicidade à pimenta do reino (Piper nigrum L.). Experientia 22:133–151

    Google Scholar 

  • Albuquerque FC, Duarte MLR, Benchimol RL, Endo T (2001) Resistência de piperáceas nativas da Amazônia à infecção causada por Nectria heamatococca f. sp. piperis. Acta Amaz 31:341–348

    Google Scholar 

  • Alex SM, Dicto J, Purushothama MG, Manjula S (2008) Differential expression of metallothionein type-2 homologues in leaves and roots of black pepper (Piper nigrum L). Genet Mol Biol 31:551–554

    Article  CAS  Google Scholar 

  • Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Shaffer AA, Zhang J, Zangh Z, Miller W, Lipman DJ (1997) Gapped Blast and PSI-BLAST, a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:1–20

    Article  Google Scholar 

  • Aslam M, Sinha VB, Singh RK, Anandhan S, Pande V, Ahmed Z (2010) Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiol Plant 32:205–210

    Article  CAS  Google Scholar 

  • Bell JN, Ryder TB, Wingate VP, Bailey JA, Lamb CJ (1986) Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant–pathogen interaction. Mol Cell Biol 6:1615–1623

    PubMed  CAS  Google Scholar 

  • Carnaúba JP, Sobral MF, da Rocha Amorim EP, Silva IO (2007) Report of Fusarium solani f. sp. piperis in Piper nigrum in the state of Alagoas. Summa Phytopathol 33:96–97

    Article  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kürkcüoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335

    Article  PubMed  CAS  Google Scholar 

  • Desender S, Andrivon D, Val F (2007) Activation of defence reactions in Solanaceae: where is the specificity? Cell Microbiol 9:21–30

    Article  PubMed  CAS  Google Scholar 

  • Develey-Rivière MP, Galiana E (2007) Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol 175:405–416

    Article  PubMed  Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Espelie KE, Franceschi VR, Kolattukudy PE (1986) Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol 81:487–492

    Article  PubMed  CAS  Google Scholar 

  • Fan F, Li X-W, Wu Y-M, Xia Z-S, Li J-J, Zhu W, Liu J-X (2010) Differential expression of expressed sequence tags in alfalfa roots under aluminum stress. Acta Physiol Plant. doi: 10.1007/s11738-010-0577-8

  • Fekete C, Fung RWM, Szabód Z, Qiu W, Chang L, Schachtman DP, Kovács LG (2009) Up-regulated transcripts in a compatible powdery mildew–grapevine interaction. Plant Physiol Biochem 47:732–738

    Article  PubMed  CAS  Google Scholar 

  • Geddes J, Eudes F, Laroche A, Selinger LB (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    Article  PubMed  CAS  Google Scholar 

  • Ghose K, Dey S, Barton H, Loake GJ, Basu D (2008) Differential profiling of selected defence-related genes induced on challenge with Alternaria brassiciola in resistant white mustard and their comparative expression pattern in susceptible India mustard. Mol Plant Pathol 9:763–775

    Article  PubMed  CAS  Google Scholar 

  • Gor MC, Ismail I, Mustapha WAW, Zainal Z, Noor NM, Othman R, Hussein ZAM(2010) Identification of cDNAs for jasmonic acid-responsive genes in Polygonum minus roots by suppression subtractive hybridization. Acta Physiol Plant doi: 10.1007/s11738-010-0546-2

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Hamada M, Uchida T, Tsuda M (1988) Ascospore dispersion of the causal agent of Nectria Blight of Piper nigrum. Annals of the Phytopathological Society of Japan 54(3):303–308

    Article  Google Scholar 

  • Hirsch J, Deslandes L, Feng DX, Balagué C, Marco Y (2002) Delayed symptom development in ein2–1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92:1142–1148

    Article  PubMed  Google Scholar 

  • Ikeda K (2010) Role of perithecia as an inoculum source for stem rot type of pepper root rot caused by Fusarium solani f. sp. piperis (teleomorph: Nectria haematococca f. sp. piperis). J Gen Plant Pathol 76:241–246

    Article  Google Scholar 

  • Jakobek JL, Smith JA, Lindgren PB (1993) Suppression of bean defense by Pseudomonas syringae. Plant Cell 5:57–63

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo MA, Manos PS (2001) Phylogeny and patterns of diversity in the genus Piper (Piperaceae). Am J Bot 88:706–716

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dunsumuir P, Bedbrook J (1985) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J 4:2411–2418

    PubMed  CAS  Google Scholar 

  • Joshi BN, Sainani MN, Bastawade KB, Gupta VS, Ranjekar PK (1998) Cysteine protease inhibitor from Pearl Millet: a new class of antifungal protein. Biochem Biophys Res Commun 246:382–387

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Kim SY, Paek KH, Choi D, Park JM (2006) Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochem Biophys Res Commun 345:638–645

    Article  PubMed  CAS  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  PubMed  CAS  Google Scholar 

  • Kué J (1997) Molecular aspects of plant responses to pathogens. Acta Physiol Plant 19:551–559

    Article  Google Scholar 

  • Latha AM, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Li X, Xia B, Jiang Y, Wu Q, Wang C, He L, Peng F, Wang R (2010) A new pathogenesis-related protein, LrPR4, from Lycoris radiata, and its antifungal activity against Magnaporthe grisea. Mol Biol Rep 37:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Kong X, Huo N, Zhou R, Jia J (1990) Gene expression profiling related to powdery mildew resistance in wheat with the method of suppression subtractive hybridization. Chin Sci Bull 47:1990–1994

    Article  Google Scholar 

  • Mandal S, Das RK, Mishra S (2011) Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol Biochem 49:117–123

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schulz B (2002) Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta 214:345–355

    Article  PubMed  CAS  Google Scholar 

  • Monk SL, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459

    CAS  Google Scholar 

  • Mukherjee AK, Lev S, Gepstein S, Horwitz BA (2009) A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. BMC Plant Biol 9:31

    Article  PubMed  Google Scholar 

  • Nascimento SB, Cascardo JCM, de Menezes IC, Duarte MLR, Darnet SH, Harada ML, de Souza CRB (2009) Identifying sequences potentially related to resistance response of Piper tuberculatum to Fusarium solani f. sp. piperis by suppression subtractive hybridization. Protein Pept Lett 12:1429–1434

    Article  Google Scholar 

  • O’Donnel K (2000) Molecular phylogeny of the Nectria haematococcaFusarium solani species complex. Mycologia 92:919–938

    Article  Google Scholar 

  • Oh BJ, Ko MK, Kim YS, Kim KS, Kostenyuk I, Kee HK (1999) A cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and the anthracnose fungus, Colletotrichum gloeosporioides. Mol Plant Microbe Interact 12:1044–1052

    Article  PubMed  CAS  Google Scholar 

  • Pagano EA, Chueca A, Lopez-Gorge J (2000) Expression of thioredoxins f and m, and of their targets fructose-1, 6-bisphosphatase and NADP-malate dehydrogenase, in pea plants grown under normal and light/temperature stress conditions. J Exp Bot 51:1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144:347–366

    Article  PubMed  CAS  Google Scholar 

  • Roberts MR, Salinas J, Collinge DB (2002) 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Fernández R, Davies TG, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276:30231–30244

    Article  PubMed  Google Scholar 

  • Schlink K (2010) Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Funct Integr Genomics 10:253–264

    Article  PubMed  CAS  Google Scholar 

  • Soltis PA, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Subramanian B, Bansal VK, Kav NNV (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J Agric Food Chem 53:313–324

    Article  PubMed  CAS  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308(5724):1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Song TF, Zheng Z (2006) Molecular characterization of the rice pathogenesis related protein, OsPR-4b and its antifungal activity against Rhizoctonia solani. J Phytopathol 154:378–384

    Article  CAS  Google Scholar 

  • Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX (2007) Over-expression of GbERF2 transcription factors in tobacco enhanced brown spots disease resistance by activating expression of downstream genes. Gene 391:80–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by: the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), the Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA), and the Universidade Federal do Pará (UFPA), Brazil. The authors thank Maria de Lourdes Reis Duarte for providing the fungus strain and Soelange Bezerra do Nascimento for help in the plant material preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Regina Batista de Souza.

Additional information

Communicated by T. Moriguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, C.R.B., Brígida, A.B.S., Santos, R.C.d. et al. Identification of sequences expressed during compatible black pepper—Fusarium solani f. sp. piperis interaction. Acta Physiol Plant 33, 2553–2560 (2011). https://doi.org/10.1007/s11738-011-0788-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0788-7

Keywords

Navigation