Skip to main content
Log in

Molecular aspects of plant responses to pathogens

  • Plant Responses To Pathogens
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plants respond to infection by accumulating many compounds some of which may function in disease resistance. These include: phytoalexins, antifungal proteins, chitinases, glucanases, esterases, proteaes, phospholipases, lipoxygenases, ribonucleases, peroxidases, phenoloxidases, lignin, callose, hydroxyproline and glycine-rich glycoproteins, phenolic cross-linked polysachcarides, melanin-like pigments, salicylic acid, jasmonic acid, ethylene, peptides, oligosaccharides, hydrogen peroxide and active oxygen species. Though specific avirulence genes, elicitors and elicitor receptors have been reported, the production of defense-related compounds is nonspecific and can be elicited by pathogens, pathogen products and many organics and inorganics. The molecular implications of this specificity/nonspecificity and their significance to disease resistance and practical disease control will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander D., Goodman, R.M., Gut-Rella N., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E., Ryals R.A. 1993. Increased tolerance to Oomycete pathogens in transgenic tobacco expressing pathogeneses-related protein Ia. Proc. Natl. Sci. USA, 90: 7327–7331.

    Article  CAS  Google Scholar 

  • Baker C. J., Orlandi E.W. 1995. Active oxygen in plant pathogensesis. Annu. Rev. Phytopathology, 33: 299–321.

    Article  CAS  Google Scholar 

  • Bayles C. J., Ghemawat M. S., Aist J.R. 1990. Inhibition by 2-deoxyglyglucose of callose formation, papillae deposition and resistance to powdery mildew in mlo barley mutant. Physiol. Molec. Plant Pathol., 36: 63–72.

    Article  CAS  Google Scholar 

  • Beffa R.S., Hofer R.M., Thomas M., Meins F. 1996. Decreased susceptibility to viral disease of β-1,3-glucanase deficient plants generated by antisense transformation. Plant Cell, 8: 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N., Mazan D., Esagerre-Tugaye M.T., 1990. Immunogold localization of hydroxyproline-rich glycoproteins in necrotic tissues of Nicotiana tabacum L. cv. Xanthi nc infected by tobacco mosaic virus. Physiol. Molec. Plant Pathol., 36: 129–145.

    Article  CAS  Google Scholar 

  • Benhamou N., Kloepper J.W. Quadt-Hallman A., Tuzun S. 1996. Induction of defense-related ultrastructural modifications in pea root tissues with endophytic bacteria. Plant Physiol. 112: 919–929.

    PubMed  CAS  Google Scholar 

  • Bohlmann H., Clausen S., Behnke S., Giese H., Heller C. 1988. Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant pathogenic fungi and possibly involved in the defense mechanism of plants. EMB0 J. 7: 1559–1565.

    CAS  Google Scholar 

  • Bowles D.J. 1990. Defense related proteins in higher plants. Annu. Rev. Biochem., 59: 873–907.

    Article  PubMed  CAS  Google Scholar 

  • Bradley D.J., Kjellbom P., Lamb C.J. 1992. Elicitor and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel rapid defense response. Cell, 70: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Broglie K., Chet J., Holliday N., Cressman R., Biddie P., Knowlton S., Mauvais C.J., Broglie R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science. 254: 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  • Daugrois J.H., Lafitte C., Barthe J.P., Touze A. 1990. Induction of β-1,3-glucopnase and chitinase activity in compatible and incompatible interactions between Colletotrichum lindemuthianum and bean cultivars. J. Phytopathology, 130: 225–234.

    CAS  Google Scholar 

  • Dawkins R. 1976. The Selfish Gene. Oxford Univ. Press, New York 244 pp.

    Google Scholar 

  • Dixon R.A., Harrison M.J., Lamb C.J. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathioology 32: 479–501.

    Article  CAS  Google Scholar 

  • Earnshaw W.C. 1995. Apoptosis: Lessons from in vitro systems. Trends Cell Biol. 5: 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Goodman R.N., Novacky A.J. 1994. The Hypersensitiove Reaction in Plants to Pathogens. Amer. Phytopathol. Press, St. Paul 244pp.

  • Hahn M.G., Bonhoff A., Grisebach H. 1985. Quantitative localization of the phytoalexin glycellin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f. sp. glycinea. Plant Physiol. 77: 591–601.

    PubMed  CAS  Google Scholar 

  • Hammerschmidt R., Kuć J. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Plant Pathol., 20: 61–71.

    CAS  Google Scholar 

  • Hammerschmidt R., Lamport D.T., Muldoon E.P. 1984. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol., 24: 43–47.

    CAS  Google Scholar 

  • Heath M.C. 1996. Plant resistance to fungi. Can. J. of Pl. Pathol., 18: 469–475.

    CAS  Google Scholar 

  • Hipskind J., Hanau R., Leite B. Niocholson R. 1990. Phytoalexin accumulation in sorghum: Identification of apigeninidin acylester. Physiol. Molec. Pl. Pathol., 36: 381–396.

    Article  CAS  Google Scholar 

  • Ji C., Kuć J. 1995. Purification and characterization of an acidic β-1,3-glucanase from cucumber and its relationship to systemic disease resistance induced by Colletotrichum lagenarium and tobacco mosaic virus. Molec. Plant-Microbe Interact., 8: 899–905.

    CAS  Google Scholar 

  • Johal G.S., Rahe J.E. 1990. Role of phytoalexins in the suppression of resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum by glyphosate. Can. J. Plant Pathol. 12: 225–235.

    Article  CAS  Google Scholar 

  • Johal G.S., Briggs S.P. 1992. Reductase activity encoded by the HMI disease resistance gene in maize. Science, 258: 985–987.

    Article  PubMed  CAS  Google Scholar 

  • Kessman H., Staub T., Hofmann C., Maetzke T., Herzog J., Ward E., Uknes S., Ryals J. 1994. Induction of systemic aquired disease resistance in plants by chemicals. Annu. Rev. Phytopathology, 32: 439–459.

    Article  Google Scholar 

  • Kuć J. 1982. Induced immunity to plant disease. Bioscience, 32: 354–860.

    Google Scholar 

  • Kuć J. 1992. Antifungal compounds from plants. In: Phytochemical Resources for Medicine and Agriculture, ed. by H. Nigg, D. Seigler Plenum Press, New York: 159–184.

    Google Scholar 

  • Kuć J. 1993. Non pesticide control of plant disease by immunization. In: Proc. of the 10th Int. Symp. on Systemic Fungiicices and Antifungal Compounds. ed. by H. Lyr and C. Polter, Ulmer Publ., Stuttgart: 225–237.

    Google Scholar 

  • Kuć J. 1994. Relevance of phytoalexins — A critical review. Acta Horticulturae, Vol. II (no 381) Sellier Druck, Freising: 526–539.

    Google Scholar 

  • Kuć J. 1995a. Phytoalexins stress metabolism, and disease resistance in plants. Annu. Rev. Phytopathology, 33: 275–297.

    Article  Google Scholar 

  • Kuć J. 1995b. Induced systemic resistance — An overview. In: Induced Systemic Resistance to Disease in Plants, ed. by R. Hammerschmidt, J. Kuć, Kluwer Publ., Dordrecht: 169–175.

    Google Scholar 

  • Kuć J. 1995c. Plant defense compounds and human health. In: Phytochemicals and Health, ed. by D.L. Gustine, H.E. Flores, Amer. Soc. Plant Physiol., Rockville, Md.: 69–77.

    Google Scholar 

  • Kuć J. 1995d. Systemic induced resistance. Aspects of Applied Biology. 42: 235–242.

    Google Scholar 

  • Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Lusso M., Kuć J. 1995a. Evidence for transcriptional regulation of β-1,3-gluconase as it relates to induced systemic resistance of tobacco to blue mold. Mol. Plant-Microbe Interact., 3: 473–475.

    Google Scholar 

  • Lusso M., Kuć J. 1995b. Increased activities of ribonuclease and protease after challenge in tobacco plants with induced systemic resistance. Physiol. Molec. Plant Pathol. 47: 419–428.

    Article  CAS  Google Scholar 

  • Lusso M., Kuć J. 1996. The effect of sense and antisense expression of the N-gene for β-1,3-glucanase on disease resistance of tobacco to fungi and viruses. Physiol. Molec. Plant Pathol., 49: 267–283.

    Article  CAS  Google Scholar 

  • Lusso M., Kuć J. 1997. Plant responses to pathogens. In: Plant Responses to Environmental Stresses: from Phytohormones to Genome Reorganization, ed. by H. R. Lerner, Marcel Dekker, New York (In Press).

    Google Scholar 

  • Madamanchi N.R., Kuć J. 1991. Induced systemic resistance in plants. In: The Fungal spore and Disease Initiation in Plants and Animals, ed. by G. Cole, H. Hoch. Plenum Press, New York: 347–362.

    Google Scholar 

  • Mauch F., Mauch-Mani B., Boller T. 1988. Antifungal hydrolases in pea tissue II. Inhibition of growth by combination of chitinase and β-1,3-glucanase. Plant Physiol. 88: 936–942.

    PubMed  CAS  Google Scholar 

  • Moerschbacher B.M., Noll U., Gorrichon L., Reisener H. J. 1990. Specific inhibition of lignification breaks hypersensitive resistance of wheat to rust. Plant Physiol., 93: 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Nemostothy G. S., Guest D. I. 1990. Phytoalexin accumulation, phenylalanine ammonia-lyase activity and ethylene biosynthesis in fosethyl Al-treated resistant and susceptible tobacco cultivars infected with Phytophthora nicotionae var. nicotioanae. Physiol. Molec. Plant Pathol. 37: 207–219.

    Article  Google Scholar 

  • Neuhaus J.M., Ahl-Goy P., Hinz U., Flores S., Meins F. 1991. High level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotiana infection. Plant Molec. Biol. 16:141–151.

    Article  CAS  Google Scholar 

  • Neuhaus J.M., Flores S., Keefe D., Ahl-Goy Pl, Meins F. 1992. The function of vacuolar β-1,3-glucanase investigated by antisense transformation. Susceptibility of transgenic Nicotiana sylvestris plants to Cercospora nicotianae infection. Plant Molec. Biol., 19: 803–813.

    Article  CAS  Google Scholar 

  • O’Conell R.J., Brown J. R., Mansfield J. W., Bailey J.A., Mazau D., Rumeau D., Esquerre-Tugaye M.T. 1990. Immunoilogical localization of hydroxyproline-rich glycoproteins accumulating in melon and bean at sites of resistance to bacteria and fungi. Mol. Plant-Microbe Interact., 3: 33–40.

    Google Scholar 

  • Nicholson R. L., Hammerschmidt R. E. 1992. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathology, 30: 369–389.

    Article  CAS  Google Scholar 

  • Pan S. Q., Ye X. S., Kuć J. 1991. Association of β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol. Molec. Plant Pathol. 39: 25–39.

    Article  CAS  Google Scholar 

  • Peng M., Kuć J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on leaf discs. Phytopathology, 82: 696–699.

    CAS  Google Scholar 

  • Ryerson D. E., Heath M.C. 1996. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by abiotic treatments. Plant Cell, 8: 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van den Elzen P. M., Cornelissen B. C. 1993. Only specific tabacco chitinase and β-1,3-glucanases exhibit antifungal activity. Plant Physiol., 101: 857–863.

    PubMed  CAS  Google Scholar 

  • Sharon A., Amsellem Z., Gressel J. 1992. Glyphosate suppression of an elicited defense responde. Increased susceptibility of Casa obtusifolia to a mycoherbicide. Plant Physiol. 98: 654–659.

    PubMed  CAS  Google Scholar 

  • Showalter A. M. 1993. Structure and function of plant cell wall protein. Plant Cell, 5: 9–23.

    Article  PubMed  CAS  Google Scholar 

  • Synder B. A., Nicholson R. S. 1990. Synthesis of phytoalexins in soghum as a site-specific response to fungal ingress. Science, 248: 1637–1639.

    Article  Google Scholar 

  • Tuzun S., Rao M., Vogeli U., Schardl C., Kuć J. 1988. Induced systemic resistance to blue mold: Early accumulation β-1,3-glucanases, chitinases and other b-proteins in immunized tobacco. Phytopathology 79: 979–983.

    Google Scholar 

  • Van Loon S. C., Van Kammen A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 40: 199–211.

    Article  Google Scholar 

  • Wang H., Li, J., Bostock R. M., Gilchrist D. G. 1996. Apoptosis: A functional paradigm for programed plant cell death induced by host-selective phytoxins and invoked during development. Plant Cell, 8: 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Weiderhold S., Alexander D. C., Ahl-Goy P., Metraux P. P., Ryals J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3:1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M., Yamauchi K., Masago H. 1978. Glyceollin its role in restricting fungal growth in resistant soybean hypocotyls infected with Phytophthora sojae. Physiol. Plant Pathol., 12: 73–82.

    Article  CAS  Google Scholar 

  • Yoshikawa N., Tsuda M., Takeuchi Y. 1993. Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, β-1,3-glucanase from soybean. Naturwissenschaften, 80: 417–420.

    Article  CAS  Google Scholar 

  • Zhu Q., Maher E. A., Masoud S., Dixon R. A., Lamb C. J. 1994. Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology, 12: 807–812.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuć, J. Molecular aspects of plant responses to pathogens. Acta Physiol Plant 19, 551–559 (1997). https://doi.org/10.1007/s11738-997-0053-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-997-0053-2

Key words

Navigation