Skip to main content
Log in

Adventitious bud regeneration from leaf explants of Platanus occidentalis L. and genetic stability assessment

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The aim of this work is to develop a method of plant regeneration from leaf explants of Platanus occidentalis L. successfully. Woody plant medium (HortScience 16:453–459, 1981) and Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium were used as induced and rooted basal medium, respectively. The effects of combinations of 6-BA, IBA, NAA and KT with different concentrations on adventitious bud regeneration from P. occidentalis leaf explants were compared. The results showed that the highest shoot regeneration frequency (90%) and maximum number (13.72 ± 0.44) of shoots per explant was recorded on WPM medium supplemented with 22.20 mmol l−1 6-BA and 0.49 mmol l−1 IBA. A 40-day-old explants were much more productive for shoot formation than others in this study. The regenerated shoots were cultured on MS medium supplemented with 1.33 mmol l−1 6-BA, 0.16 mmol l−1 NAA and 2% (w/v) adenine, after 2-week shoots were transferred to 1/2 MS medium supplemented with 0.49 mmol l−1 IBA for rooting. Hardened plantlets via acclimatization were transferred to pots and transplanted to the soil finally. To ascertain whether tissue culture had effects on the genetic stability of plantlets regenerated, the genetic diversity was assessed using RAPD marker. A total of 96 bands ranging from 0.5 to 2.2 kb with an average of 6.4 bands per primer, were obtained using 15 primers. Amplified products exhibited few of polymorphic patterns across all the plants of P. occidentalis and the overall frequency of detection of somaclonal polymorphisms was lower than 0.0104%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog

WPM:

Woody plant medium

6-BA:

6-Benzyladenine

KT:

Kinetin

IBA:

Indole-3-butyric acid

NAA:

Naphthaleneacetic acid

RAPD:

Random amplified polymorphic DNA

References

  • Baker BS, Bhatia SK (1993) Factors affecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tissue Organ Cult 35:273–277. doi:10.1007/BF00037281

    Article  CAS  Google Scholar 

  • Bayliss MW (1980) Chromosomal variation in plant tissue culture. Int Rev Cytol Suppl 11A:113–144

    Google Scholar 

  • Billings SG, Chin CK, Jelenkovic G (1988) Regeneration of blueberry plantlets from leaf segments. HortScience 23:763–766

    Google Scholar 

  • Bohanec B, Jakse M, Ihan A, Javornik B (1995) Studies of gynogenesis in onion (Allium cepa). Plant Sci 104:215–224. doi:10.1016/0168-9452(94)04030-K

    Article  CAS  Google Scholar 

  • Cecchini E, Natah L, Cavallini A, Durante M (1992) DNA variation in regenerated plants of Pea. Theor Appl Genet 84:874–879. doi:10.1007/BF00227399

    Article  CAS  Google Scholar 

  • Chevreau E, Skirvin RM, Abu Quaid HA, Korban SS, Sullivan JG (1989) Adventitious shoot regeneration from leaf tissues of three pear (Pyrus sp.) cultivars in vitro. Plant Cell Rep 7:688–691

    CAS  Google Scholar 

  • Compton ME (1999) Dark pretreatment improves adventitious shoot organogenesis from cotyledons of diploid watermelon. Plant Cell Tissue Organ Cult 58:185–188. doi:10.1023/A:1006364013126

    Article  Google Scholar 

  • Cullis CA, Cleary W (1986) DNA variation in Flax tissue culture. Can J Genet Cytol 28:247–251

    CAS  Google Scholar 

  • De Klerk G, ter Brugge J, Marinova S (1997) Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’. Plant Cell Tissue Organ Cult 49:39–44. doi:10.1023/A:1005850222973

    Article  Google Scholar 

  • Dewan A, Nanda K, Gupta SC (1992) In vitro micropropagation of Acacia nilotica subsp. Indica Brenen via cotyledonary nodes. Plant Cell Rep 12:18–21. doi:10.1007/BF00232415

    Article  Google Scholar 

  • Distabanjong K, Geneve R (1997) Multiple shoot formation from cotyledonary node segments of Eastern redbud. Plant Cell Tissue Organ Cult 47:247–254. doi:10.1007/BF02318979

    Article  Google Scholar 

  • Doyle JJ, Dickson EE (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11

    Google Scholar 

  • Dunstan DI, Thorpe TA (1986) Plant regeneration and genetic variability. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 3. Academic Press, Orlando, pp 223–241

    Google Scholar 

  • Eapen S, Tivarekar S, George L (1998) Thidiazuron-induced shoot regeneration in pigeonpea (Cajanus cajan L.). Plant Cell Tissue Organ Cult 53:217–220. doi:10.1023/A:1006060318752

    Article  CAS  Google Scholar 

  • Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 77:759–774. doi:10.2307/2443467

    Article  Google Scholar 

  • Ezura H, Oasawa K (1994) Ploidy of somatic embryos and the ability to regenerate plantlets in melon (Cucumis melo L.). Plant Cell Rep 14:107–111. doi:10.1007/BF00233771

    Article  CAS  Google Scholar 

  • Famiani F, Ferradini N, Staffolani P, Standardi A (1994) Effect of leaf excision time and age, BA concentration and dark treatments on in vitro shoot regeneration of M26 apple rootstock. J Hortic Sci 69(4):679–685

    Google Scholar 

  • Fan GQ, Li M, He YQ, Jiang JP (2004) Somatic embryogenesis of platanus orientalis and its plantlet regeneration. Scientia Silvae Sinicae 40(3):71–75 (in Chinese with English abstract)

    Google Scholar 

  • Fasolo F, Zimmerman RH, Fordham I (1989) Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult 16:75–86. doi:10.1007/BF00036516

    Article  CAS  Google Scholar 

  • Goh HKL, Rao AN, Loh CS (1990) Direct shoot bud formation from leaf explant of seedlings and mature mangosteen (Garcinia mangostana L.) trees. Plant Sci 68:113–121. doi:10.1016/0168-9452(90)90159-L

    Article  Google Scholar 

  • Gu XF, Zhang JR (2005) An efficient adventitious shoot regeneration system for Zhanhua winter jujube (Zizyphus jujuba Mill.) using leaf explants. Plant Cell Rep 23:775–779. doi:10.1007/s00299-005-0920-5

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (1999) Molecular markers for genetic fidelity during micropropagation and conservation. Curr Sci 76:1308–1310

    Google Scholar 

  • He XL, Liu GH, She JM, Ni WC (2006) Adventitious shoot regeneration from in vitro cultured leaves of Platanus orientalis Willd. Jiangsu J Agric Sci 22(3):225–228 (in Chinese with English abstract)

    Google Scholar 

  • Herman DE, Hess CE (1963) The effect of etiolation upon the rooting of cuttings. Proc Int Plant Prop Soc 13:42–62

    Google Scholar 

  • Huang LC, Huang BL, Wang CH, Kuo CI, Murashige T (2000) Developing an improved in vitro propagation system for slow-growing species using Garcinia mangostana L. (mangosteen). In Vitro Cell Dev Biol 36:501–504

    Article  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119. doi:10.1007/BF01983223

    Article  CAS  Google Scholar 

  • Isabel N, Tremblay L, Michaud M, Tremblay FM, Bousquet J (1993) RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis derived populations of Picea mariana. Theor Appl Genet 86:81–87. doi:10.1007/BF00223811

    Article  CAS  Google Scholar 

  • Islam R, Hossain M, Joarder OI, Karim MR (1993) Adventitious shoot formation on excised leaf explants of in vitro grown seedlings of Aegle marmelos Corr. J Hortic Sci 68:95–498

    Google Scholar 

  • Jaligot E, Rival E, Beulé T, Dussert S, Verdeil JL (2000) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690. doi:10.1007/s002999900177

    Article  CAS  Google Scholar 

  • Jha AK, Prakash S, Jain N, Nanda K, Gupta SC (2004) Micropropagation of Sesbania rostrata from the cotyledonary node. Biol Plant 48:289–292. doi:10.1023/B:BIOP.0000033458.88441.67

    Article  Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302. doi:10.1007/BF00023959

    Article  Google Scholar 

  • Kim MS, Klopfenstein NB, Cregg BM (1998) In vitro and ex vitro rooting of micropropagated shoots using three green ash (Fraxinus pennsylvanica) clones. New For 16:43–57. doi:10.1023/A:1006564423011

    Google Scholar 

  • Kollárová K, Lisková D, Kákoniová D, Lux A (2004) Effect of auxins on Karwinskia humboldtiana root cultures. Plant Cell Tissue Organ Cult 79:213–221. doi:10.1007/s11240-004-0662-z

    Article  Google Scholar 

  • Kozai T, Koyama Y, Watanabe I (1988) Multiplication of potato plantlets in vitro with sugar free medium under high photosynthetic photon flux. Acta Hortic 230:121–127

    Google Scholar 

  • Kumar A, Sood A, Palni UT, Gupta AK, Palni LMS (2001) Micropropagation of Rosa damascena Mill from mature bushes using thidiazuron. J Hortic Sci Biotechnol 76:30–34

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  Google Scholar 

  • Li ZN, Fang F, Liu GF, Bao MZ (2007a) Stable agrobacterium-mediated genetic plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650. doi:10.1007/s00299-006-0271-x

    Article  PubMed  CAS  Google Scholar 

  • Li ZN, Liu GF, Fang F, Bao MZ (2007b) Adventitious shoot regeneration of Platanus acerifolia Willd. Facilitated by Timentin: an antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. For Stud China 9(1):14–18. doi:10.1007/s11632-007-0003-5

    Article  CAS  Google Scholar 

  • Liu GF, Bao MZ (2003) Adventitious shoot regeneration from in vitro cultured leaves of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 21:640–644

    PubMed  CAS  Google Scholar 

  • Liu C, Zhu J, Liu Z, Li L, Pan R, Jin L (2002a) Exogenous auxin effects on growth and phenotype of normal and hairy roots of Puerarialobata (Willd.) Ohwi. Plant Growth Regul 38:37–43. doi:10.1023/A:1020904528045

    Article  CAS  Google Scholar 

  • Liu GF, Huang J, Chen LQ, Bao MZ (2002b) Plant regeneration from excised hypocotyl explants of Platanus acerifolia Willd. In Vitro Cell Dev Biol Plant 38:558–563. doi:10.1079/IVP2002350

    Article  CAS  Google Scholar 

  • Liu GF, Li ZN, Bao MZ (2007) Colchicine-induced chromosome doubling in Platanus acerifolia L. and its effect on plant morphology. Euphytica 157:145–154. doi:10.1007/s10681-007-9406-6

    Article  Google Scholar 

  • Ludwig-Muller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regulation 32:219–230

    Google Scholar 

  • Mante S, Scorza R, Cordts JM (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestic and Prunus cerasus. Plant Cell Tissue Organ Cult 19:1–11. doi:10.1007/BF00037771

    Article  CAS  Google Scholar 

  • Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496. doi:10.1007/s00299-004-0870-3

    Article  PubMed  CAS  Google Scholar 

  • Matasci M, Gessler C (1997) A fungus menaces the London planetree. Acta Vet Hung 45(2):69–75

    Google Scholar 

  • McCown BH, Loyd G (1981) Woody plant medium (WMP)—a mineral nutrient formulation for microculture of wood plant species. HortScience 16:453–459

    Google Scholar 

  • Munthali MT, Newbury HJ, Ford-Lloyd BV (1996) The detection of somaclonal variants of beet using RAPD. Plant Cell Rep 15:474–478. doi:10.1007/BF00232977

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Niederwieser JG, Van Staden J (1990) The relationship between genotype, tissue age and endogenous cytokinin levels on adventitious bud formation on leaves of Lachenalia. Plant Cell Tissue Organ Cult 22:223–228. doi:10.1007/BF00033640

    Article  CAS  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: break down of normal controls. Proc Natl Acad Sci USA 91:5222–5226. doi:10.1073/pnas.91.12.5222

    Article  PubMed  CAS  Google Scholar 

  • Pradhan C, Kar S, Pattnaik S, Chand PK (1998) Propagation of Dalbergia sissoo Roxb through in vitro shoot proliferation from cotyledonary nodes. Plant Cell Rep 18:122–126. doi:10.1007/s002990050543

    Article  CAS  Google Scholar 

  • Purohit SD, Dave A (1996) Micropropagation of Sterculia urens Roxb. An endangered tree species. Plant Cell Rep 15:704–706. doi:10.1007/BF00231929

    Article  CAS  Google Scholar 

  • Rani V, Raina SN (1998) Genetic analysis of enhanced axillary branching derived Eucalyptus tereticornis Smith and E. camaldulensis Dehn. plants. Plant Cell Rep 17:236–242. doi:10.1007/s002990050385

    Article  CAS  Google Scholar 

  • Rani V, Parida A, Raina SN (1995) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoids Marsh. Plant Cell Rep 14:459–462. doi:10.1007/BF00234055

    Article  CAS  Google Scholar 

  • Rusli I, Pierre CD (2001) Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Sci Hortic (Amsterdam) 88:41–57 10.1016/S0304-4238(00)00189-8

    Article  Google Scholar 

  • Salvi ND, George L, Eapen S (2001) Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tissue Organ Cult 66:113–119. doi:10.1023/A:1010638209377

    Article  CAS  Google Scholar 

  • Satheeshkumar K, Seeni S (2000) In vitro multiplication of Nothapodites foetida (Wight.) Sleumer through seedling explant culture. Indian J Exp Biol 38:273–277

    PubMed  CAS  Google Scholar 

  • Shuerman PL, Dandekar AM (1993) Transformation of temperate woody crops: progress and potentials. Sci Hortic (Amsterdam) 55:101–124. doi:10.1016/0304-4238(93)90027-N

    Article  Google Scholar 

  • Sriskandarajah S, Frello S, Jørgensen K, Serek M (2004) Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots. Plant Cell Rep 23:59–63. doi:10.1007/s00299-004-0797-8

    Article  PubMed  CAS  Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM (1995) Sheppard LA Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26. doi:10.1007/BF01682086

    Article  CAS  Google Scholar 

  • Subiza J, Cabrera M, Valdivieso R, Subiza JL, Jerez M, Jimenez JA et al (1994) Seasonal asthma caused by airborne Platanus pollen. Clin Exp Allergy 24(12):1123–1129

    PubMed  CAS  Google Scholar 

  • Sudha CG, Krishnan PN, Pushpangadan P, Seeni P (2005) In vitro propagation of Decalepis arayalpathra, a critically endangered ethnomedicinal plant. In Vitro Cell Dev Biol Plant 41:648–654. doi:10.1079/IVP2005652

    Article  Google Scholar 

  • Thomas TD (2003) Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biol Plant 46:529–533. doi:10.1023/A:1024807426591

    Article  CAS  Google Scholar 

  • Trigiano RN, Gray DJ (2000) Plant tissue culture: concepts and laboratory exercises, 2nd edn. CRC Press, Boca Raton, FL, USA

  • Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H (2007) Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Dev Biol Plant 43:51–58

    Google Scholar 

  • Varela S, Subiza J, Subiza JL, Rodriguez R, Garcia B, Jerez M et al (1997) Platanus pollen as an important cause of pollinosis. J Allergy Clin Immunol 100(1):748–754. doi:10.1016/S0091-6749(97)70268-9

    Article  PubMed  CAS  Google Scholar 

  • Vengadesan G, Ganapathi A, Prem Anand R, Anbazhagan RV (2002) In vitro propagation of Acacia sinuata (Lour.) Merr. via cotyledonary nodes. Agrofor Syst 55:9–15. doi:10.1023/A:1020269022363

    Article  Google Scholar 

  • Walter JM (1946) Canker stain of plane trees. Circular no. 742. United States Department of Agriculture, Washington, DC

  • Walter JM, Rex EG, Schreiber R (1952) The rate of progress and destructiveness of canker stain of plane trees. Phytopathology 42:236–239

    Google Scholar 

  • Wang L, Li HS, Lin N, Cui DC (2004) Establishment of leaf regeneration system in Platanus acerifolia. Scientia Silvae Sinicae 40(1):58–63 (in Chinese with English abstract)

    Google Scholar 

  • Wei ZM, Xu ZH (1991) Mesophyll protoplast culture and plant regeneration of oriental planetree (Platanus orientalis). Acta Bot Sin 33(1):813–818

    CAS  Google Scholar 

  • Zaerr JB, Mapes MO (1982) Action of growth regulators. In: Bonga JM, Durzan DJ (eds) Tissue culture in forestry. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, pp 231–255

  • Zahim-Al AM, Ford-Lloyed BV, Newbury HJ (1999) Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep 18:473–477. doi:10.1007/s002990050606

    Article  Google Scholar 

  • Zou YM, Shi JS (2005) Establishment of high frequency regeneration system of adventitious bud of Platanus occidentalis Linn. J Nanjing For Univ 29(4):15–19 (Natural Sciences Edition)

    Google Scholar 

  • Zou YM, Shi JS (2006) Tissue culture and mass propagation of Platanus occidentalis Linn. J Nanjing For Univ 30(6):61–65 (Natural Sciences Edition)

    Google Scholar 

Download references

Acknowledgments

This work was supported by 948 Program (No. 2005-4-58) of State Forestry Administration People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renying Zhuo.

Additional information

Communicated by E. Lojkowska.

Yuehua Sun, Yanling Zhao, and Xiaojuan Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Zhao, Y., Wang, X. et al. Adventitious bud regeneration from leaf explants of Platanus occidentalis L. and genetic stability assessment. Acta Physiol Plant 31, 33–41 (2009). https://doi.org/10.1007/s11738-008-0196-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0196-9

Keywords

Navigation