Skip to main content
Log in

Direct shoot bud induction and plant regeneration in Capsicum frutescens Mill.: influence of polyamines and polarity

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

AgNO3 :

Silver nitrate

BA:

N 6-benzyladenine

DFMA:

α-dl-Difluromethyl arginine

DFMO:

α-dl-Difluromethyl ornithine

GA3 :

Gibberellic acid

IAA:

Indole-3-acetic acid

2iP:

Isopentenyladenine

MES:

2-(N-morpholine) ethanesulphonic acid

MS:

Murashige and Skoog medium

PAA:

Phenyl acetic acid

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

References

  • Apelbaum A, Goldlust A, Icekson I (1985) Control of ethylene by arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol 79:635

    PubMed  CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Bais HP, Sudha GS, Ravishankar GA (2000) Putrescine and AgNO3 influences shoot multiplication in vitro flowering and endogenous titers of polyamines in Cichorium intybus L cv Lucknow local. J Plant Growth Regul 19:238–248

    PubMed  CAS  Google Scholar 

  • Bais HP, Sudha GS, Ravishankar GA (2001) Influence of putrescine AgNO3 and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Cichorium intybus and their regenerants. Plant Cell Rep 20:547–555

    Article  CAS  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    Article  PubMed  CAS  Google Scholar 

  • Binzel ML, Sankhla N, Joshi S, Sankhla D (1996) Induction of somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell Rep 15:536–540

    Article  CAS  Google Scholar 

  • Chi CL, Pua EC (1989) Ethylene inhibitor enhanced de novo shoot regeneration from cotyledons of B. campestris spp. chinensis (Chinese cabbage) in vitro. Plant Sci 64:240–243

    Article  Google Scholar 

  • Chi CL, Lin WS, Lee JEE, Pua EC (1994) Role of polyamines on de novo shoot morphogenesis from cotyledons of B. campestris spp. pekinesis (lour) olsson, in vitro. Plant Cell Rep 13:323–329

    Article  CAS  Google Scholar 

  • Christopher T, Rajam MV (1994) In vitro clonal propagation of Capsicum spp. Plant Cell Tissue Organ Cult 38:25–29

    Article  Google Scholar 

  • Davies PJ (1987) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Boston

  • Ebida AIA, Hu CY (1993) In vitro morphogenetic responses and plant regeneration from pepper (Capsicum annuum L. Cv Early California Wonder) seedling explants. Plant Cell Rep 13:107–110

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have role in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science 223:1433–1435

    Article  PubMed  CAS  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33:382–388

    Article  CAS  Google Scholar 

  • Govindarajan VS (1985) Capsicum—production, technology, chemistry and quality—part II, processed products, standards, world production and trade. CRC Crit Rev Nutr 23:207

    Article  Google Scholar 

  • Gururaj HB, Giridhar P, Sharma A, Prasad BCN, Ravishankar GA (2004) In vitro clonal propagation of bird eye chilli (Capsicum frutescens Mill.). Indian J Exp Biol 42(11):1136–1140

    PubMed  CAS  Google Scholar 

  • Harini I, Lakshmisita G (1993) Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.). Plant Sci 89:107–112

    Article  Google Scholar 

  • Husain S, Jain A, Kothari SL (1999) Phenyl acetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant Cell Rep 19:64–68

    Article  CAS  Google Scholar 

  • Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chili pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev Biol Plant 32:72–80

    Article  CAS  Google Scholar 

  • Kim S, Kim SR, An CS, Hong YN, Lee KW (2001) Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.). Mol Cells 12:221–226

    PubMed  CAS  Google Scholar 

  • Kumar V, Gururaj HB, Prasad BCN, Giridhar P, Ravishankar GA (2005) Direct shoot organogenesis on shoot apex from seedling explants of Capsicum annuum L. Sci Hortic 106:237–246

    Article  CAS  Google Scholar 

  • Liu W, Parrot WA, Hilderbrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot like structures expressing introduced genes. Plant Cell Rep 9:360–364

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472–497

    Article  Google Scholar 

  • Ochoa-Alejo N, Ramirez-Malagon R (2001) In vitro chilli pepper biotechnology. In Vitro Cell Dev Biol Plant 37:701–729

    Article  CAS  Google Scholar 

  • Phillips GC, Hubstenberger JF (1985) Organogenesis in pepper tissue cultures. Plant Cell Tissue Organ Cult 4:261–269

    Article  CAS  Google Scholar 

  • Pua CE, Sim EG, Chi LG, Kong FL (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyls explants of Chinese radish (Raphanus sativus L var longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690

    Article  CAS  Google Scholar 

  • Reddy OB, Giridhar P, Ravishankar GA (2002) The effect of triacontanol on micropropagation of Capsicum frutescens L. and Decalepis hamiltonii W&A. Plant Cell Tissue Organ Cult 71(3):253–258

    Article  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3 an inhibitor of ethylene action effect on arginine decarboxylase activity. Plant Sci 67:89–95

    Article  CAS  Google Scholar 

  • Smith TA (1985) Plant polyamines metabolism and function polyamine synthesis. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interaction. American Society of Plant Physiologists, Rockville, pp 1–23

    Google Scholar 

  • Steinitz B, Kusek S, Tabib Y, Paran I, Zelcer A (2003) Pepper (Capsicum annuum L.) regenerants obtained by direct somatic embryogenesis fail to develop a shoot. In Vitro Cell Dev Biol Plant 39:296–303

    Article  CAS  Google Scholar 

  • Sushma T, Palni LMS (2004) Studies on in vitro propagation of Himalayan ceder (Cedrus deodara) using zygotic embryos and stem segments. Indian J Biotech 3:209–215

    Google Scholar 

  • Valera-Montero LL, Ochoa-Alejo N (1992) A novel approach for chili pepper (Capsicum annuum L.) plant regeneration: shoot induction in rooted hypocotyls. Plant Sci 84:215–219

    Article  CAS  Google Scholar 

  • Zhu YX, On-Yang WJ, Zang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors VK, AS and BCNP gratefully acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi for research fellowships. This research was financially supported by the Department of Biotechnology, New Delhi, India. We are thankful to DRDO, Pithoragarh, Uttaranchal for providing the seeds of C. frutescens var. KTOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokare Aswathanarayana Ravishankar.

Additional information

Communicated by J. Kepczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Sharma, A., Narasimha Prasad, B.C. et al. Direct shoot bud induction and plant regeneration in Capsicum frutescens Mill.: influence of polyamines and polarity. Acta Physiol Plant 29, 11–18 (2007). https://doi.org/10.1007/s11738-006-0002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0002-5

Keywords

Navigation