Skip to main content
Log in

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes in a cable stayed bridge

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel structural modification approach has been adopted to eliminate the early coupling between the bending and torsional mode shapes of vibrations for a cable stayed bridge model generated using ABAQUS software. Two lateral steel beams are added to the middle span of the structure. Frequency analysis is dedicated to obtain the natural frequencies of the first eight mode shapes of vibrations before and after the structural modification approach. Numerical simulations of wind excitations are conducted for the 3D model of the cable stayed bridge with duration of 30 s supporting on real data of a strong wind from the literature. Both vertical and torsional displacements are calculated at the mid span of the deck to analyze both the bending and the torsional stiffness of the system before and after the structural modification. The results of the frequency analysis after applying lateral steel beams declared a safer structure against vertical and torsional vibrations and rarely expected flutter wind speed. Furthermore, the coupling between the vertical and torsional mode shapes has been removed to larger natural frequencies magnitudes with a high factor of safety. The novel structural approach manifested great efficiency in increasing vertical and torsional stiffness of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016 (in press)

    Google Scholar 

  2. Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local remeshing. Computational Mechanics, 2015, 56(2): 291–315

    Article  MathSciNet  MATH  Google Scholar 

  3. Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

    Article  Google Scholar 

  4. Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

    Article  MathSciNet  MATH  Google Scholar 

  5. Areias PMA, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63

    Article  Google Scholar 

  6. Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

    Article  Google Scholar 

  7. Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

    Article  MATH  Google Scholar 

  8. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

  9. Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476

    Article  MathSciNet  Google Scholar 

  10. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2014, 68: 446–464

    Article  Google Scholar 

  11. Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112

    Article  MathSciNet  Google Scholar 

  12. Valizadeh N, Bazilevs Y, Chen J S, Rabczuk T. A coupled IGAmeshfree discretization of arbitrary order of accuracy and without global geometry parameterization. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 20–37

    Article  MathSciNet  MATH  Google Scholar 

  13. Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric galerkin boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275

    Article  MathSciNet  Google Scholar 

  14. Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117(4190): 89–116

    Article  MathSciNet  Google Scholar 

  15. Anitescu C, Jia Y, Zhang Y, Rabczuk T. An isogeometric collocation method using super convergent points. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1073–1097

    Article  MathSciNet  MATH  Google Scholar 

  16. Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

    Article  MathSciNet  MATH  Google Scholar 

  17. Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    Article  MathSciNet  Google Scholar 

  18. Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

    Article  Google Scholar 

  19. Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    Article  MathSciNet  Google Scholar 

  20. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

    Article  Google Scholar 

  21. Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

    Article  Google Scholar 

  22. Zi G, Rabczuk T, Wall W A. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

    Article  MATH  Google Scholar 

  23. Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1-4): 19–49

    Article  MATH  Google Scholar 

  24. Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

    Article  MATH  Google Scholar 

  25. Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75 (5): 943–960

    Article  Google Scholar 

  26. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

    Article  Google Scholar 

  27. Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23-24): 1391–1411

    Article  Google Scholar 

  28. Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

    Article  MATH  Google Scholar 

  29. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 37–40, 2437–2455

    Article  MATH  Google Scholar 

  30. Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MathSciNet  MATH  Google Scholar 

  31. Amiri F, Milan D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

    Article  Google Scholar 

  32. Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  33. Chau-Dinh T, Zi G, Lee P S, Song J H, Rabczuk T. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256

    Article  Google Scholar 

  34. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wuchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47-48): 3410–3424

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 198(2): 165–177

    Article  MATH  Google Scholar 

  36. Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30): 2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  37. Rabczuk T, Eibl J, Stempniewski L. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

    Article  MATH  Google Scholar 

  38. Rabczuk T, Eibl J, Stempniewski L. Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Engineering Fracture Mechanics, 2004, 71(4-6): 547–556

    Article  Google Scholar 

  39. Rabczuk T, Eibl J. Modeling dynamic failure of concrete with meshfree particle methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

    Article  Google Scholar 

  40. Rabczuk T, Samaniego E, Belytschko T. Simplied model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. International Journal of Impact Engineering, 2007, 34(2): 163–177

    Article  Google Scholar 

  41. Rabczuk T, Areias P M A, Belytschko T. A simplied meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021

    Article  MATH  Google Scholar 

  42. Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6-8): 641–658

    Article  MathSciNet  MATH  Google Scholar 

  43. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

    MathSciNet  MATH  Google Scholar 

  44. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  45. Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1035–1063

    Article  MathSciNet  MATH  Google Scholar 

  46. Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5-6): 1327–1354

    Article  MATH  Google Scholar 

  47. Rabczuk T, Eibl J. Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/nite element method. International Journal of Solids and Structures, 2004, 41(3-4): 1061–1080

    Article  MATH  Google Scholar 

  48. Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582

    Article  MathSciNet  MATH  Google Scholar 

  49. Budarapu P R, Sudhir Sastry Y B, Natarajan R. Design concepts of an aircraft wing: Composite and morphing airfoil with auxetic structures. Frontiers of Structural and Civil Engineering, 2016, (in press)

    Google Scholar 

  50. Sudhir Sastry Y B, Budarapu P R, Madhavi N, Krishna Y N. Buckling analysis of thin wall stiffened composite panels. Computational Materials Science, 2015, 96(B): 459–471

    Article  Google Scholar 

  51. Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12

    Article  Google Scholar 

  52. Thai H C, Nguyen-Xuan H, Bordas S, Nguyen-Thanh N, Rabczuk T. Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mechanics of Advanced Materials and Structures, 2015, 22(6): 451–469

    Article  Google Scholar 

  53. Thai C H, Ferreira A J M, Bordas S, Rabczuk T, Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics. A, Solids, 2014, 43: 89–108

    Article  MATH  Google Scholar 

  54. Phan-Dao H, Nguyen-Xuan H, Thai-Hoang C, Nguyen-Thoi T, Rabczuk T. An edge-based smoothed finite element method for analysis of laminated composite plates. International Journal of Computational Methods, 2013, 10(1): 1340005

    Article  MathSciNet  MATH  Google Scholar 

  55. Thai C H, Nguyen-Xuan H, Nguyen-Thanh N, Le T H, Nguyen-Thoi T, Rabczuk T. Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. International Journal for Numerical Methods in Engineering, 2012, 91(6): 571–603

    Article  MathSciNet  MATH  Google Scholar 

  56. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie J F. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 197(13-16): 13–16, 1184–1203

    Article  MATH  Google Scholar 

  57. Budarapu P R, Javvaji B, Sutrakar V K, Roy Mahapatra D, Zi G, Rabczuk T. Crack propagation in Graphene. Journal of Applied Physics, 2015, 118(6): 064307

    Article  Google Scholar 

  58. Yang S W, Budarapu P R, Mahapatra D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96B: 382–395

    Article  Google Scholar 

  59. Budarapu P R, Sudhir Sastry Y B, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151–159

    Article  Google Scholar 

  60. Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128–140

    Article  Google Scholar 

  61. Budarapu P R, Gracie R, Yang S W, Zhaung X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  62. Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Article  Google Scholar 

  63. Valizadeh N, Natarajan S, Gonzalez-Estrada O A, Rabczuk T, Bui T Q, Bordas S P A. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures, 2013, 99: 309–326

    Article  Google Scholar 

  64. Shin Y B, Sin S H, Kim Y M, Hwang J S. Performance evaluation of linear active mass damper for bridges through wind tunnel test. In: Proceedings of the 9th International Conference on Structural Dynamics. EURODYN 2014, Porto, Portugal, 30 June–2 July, 2014

    Google Scholar 

  65. Vairo G. A Simple analytical approach to the aeroelastic stability problem of long span cable stayed bridges. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11(1): 1–19

    Article  MathSciNet  MATH  Google Scholar 

  66. Man S K. Lateral and torsional vibration control of long span bridge deck using novel tuned liquid column dampers. Dissertation for the Doctoral Degree. Kowloon: The Hong Kong Polytechnic University, 2004

    Google Scholar 

  67. Ge Y J, Xiang H F. Bluff Body Aerodynamics Application I challenging bridge span Length. BBAA VI International Colloquium on: Bluff Bodies Aerodynamics and Applications, Milano, Italy, 20–24 July, 2008

    Google Scholar 

  68. Ding Q, Lee P K K. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers & Structures, 2000, 76(6): 787–797

    Article  Google Scholar 

  69. Zhang W. Fatigue performance of exciting bridges under dynamic loads from winds and vehicles. Dissertation for the Doctoral Degree. Louisiana: Louisiana State University, 2012

    Google Scholar 

  70. He X, Babak M, Conte J P, Ahmed E. Modal identification study of Vincent Thomas Bridge using simulated wind-induced ambient vibration data. Computer-Aided Civil and Infrastructure Engineering, 2008, 23: 373–388

    Article  Google Scholar 

  71. Winther S J, Sorensen N, Nielsen S R K. Aeroelastic stability of suspension bridges using CFD. In: Proceedings of International Symposium of the International Association for Shell and Spatial Structures (IASS). Structural Architecture towards the future looking to the past. Venice, Italy, 3–6 December 2007

    Google Scholar 

  72. Preumont A, Voltan M, Sangiovanni A, Bastaits R, Mokrani B, Alaluf D. An investigation of the active damping of Suspension Bridges. Mathematics and Mechanics of Complex Systems, 2015, 3 (4): 385–406

    Article  MATH  MathSciNet  Google Scholar 

  73. Pacheco B, Fujino Y, Sulekh A. Estimation curve for modal damping in stay cables with viscous damper. Journal of Structural Engineering, 1993, 119(6): 1961–1979

    Article  Google Scholar 

  74. Wang H, Li A, Zong Z, Tong T, Zhou R. Damper Optimization for Long-Span Suspension Bridges: Formulations and Applications. IGI global, Pennsylvania, 2013, DOI: 10.4018/978-1-4666-2029-2. ch005

    Google Scholar 

  75. Fujino Y, Siringoringo D M, Nagayama T, Su D. Control, simulation and monitoring of bridge vibration — Japan’s recent development and practice. IABSE-JSCE Joint Conference on Advances in Bridge Engineering-II, Dhaka, Bangladesh, 8–10 August, 2010

    Google Scholar 

  76. Naimul Haque Md. Shaping effects on aerodynamics of long-span cable-supported bridge deck by unsteady RANS. Dissertation for the Doctoral Degree. Louisiana: Yokohama National University, 2015

    Google Scholar 

  77. Krzystof W. Passive Aerodynamic Control of Wind Induced Instabilitues in Long Span Bridges. Wydawnictwo Politechniki Gdanskiej, Gdansk, 2002

    Google Scholar 

  78. Nicholas P. Jones, Cheryl A. Spartz. structural damping estimation for long-span bridges. Journal of Engineering Mechanics, 1990, 116 (11): 2414–2433

    Article  Google Scholar 

  79. Xiong L, Liao H L, Li M S. The flutter performance study for a suspension bridge based on numerical analysis and wind-tunnel test. The 2014 World Congress on Advances in Civil, Environmental and Materials Research (ACEM14), Busan, Korea, 24–28 August, 2014

    Google Scholar 

  80. Bakis K N, Massaro M, Williams MS, Limebeer D J N. Aeroela stic control of long-span suspension bridges with controllable winglets. Journal of Structural Control and Health Monitoring, 2016, DOI: 10.1002/stc.1839

    Google Scholar 

  81. Kusano I, Baldomir A, Jurado J A, Hernandez S. Reliability based design optimization of long span bridges considering flutter. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135: 149–162

    Article  Google Scholar 

  82. Su C, Han D J, Yan Q S, Au F T K, Tham L G, Lee P K K, Lam K M, Wong K Y. Wind-induced vibration analysis of the Hong Kong Ting Kau Bridge. Proceedings of the Institution of Civil Engineers, Structures and Buildings, 2003, 156(3): 263–272

    Article  Google Scholar 

  83. Phan D H, Nguyen N T. Flutter and buffeting control of long-span suspension bridge by passive flaps: Experiment and Numerical Simulation. International Journal of Aeronautical and Space Science, 2013, 14(1): 46–57

    Article  Google Scholar 

  84. Kusano I. Reliability based design optimization of long span bridges under flutter constraint. Dissertation for the Doctoral Degree. La Coruna: Universidade Da Coruna, 2015

    Google Scholar 

  85. Cheng S. Structural and aerodynamic stability analysis of long span cable stayed bridges. Dissertation for the Doctoral Degree. Ottawa: Carleton University, 1999

    Google Scholar 

  86. Petersen C. Schwingungsdämpfer im Ingenieurbau. Munich: Maurer Söhne GmbH and Co KG, 2001

    Google Scholar 

  87. Ziegler F, Kazemi Amiri A. Bridge vibrations effectively damped by means of tuned liquid column gas dampers. Asian Journal of Civil Engineering, 2013, 14(1): 1–16

    Google Scholar 

  88. Caruso G. Othman Ben Mekki, Frederic Bourquin. Modeling and experimental validation of a new electromechanical damping device. Journal of Vibroengineering, 2009, 11(4): 1–9

    Google Scholar 

  89. Chen X Z, Kareem A, Matsumoto M. Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 649–664

    Article  Google Scholar 

  90. Sato H, Hirahara N, Fumoto K, Hirano S, Kusuhara S. Full aeroelastic model test of a super long-span bridge with slotted box girder. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 2023–2032

    Article  Google Scholar 

  91. Dyrbye C, Hansen S O. Wind loads on structures. UK: John Wiley and Sons Ltd, 1997

    Google Scholar 

  92. Johansson J, Andersen M S, Øvre M S. Non-flutter design principle for long span bridges. In: Proceedings of the Eighth Asia-Pacific Conference on Wind Engineering. 2013

    Google Scholar 

  93. Andersen M S, Sahin E, Laustsen B, Lenius M, Læso J R. Implementation of the non-flutter design principle. In: XIII Conference of the Italian Association for Wind Engineering INVENTO 2014. Genova, Italy, 22–25 June, 2014

    Google Scholar 

  94. Bartoli G, D’Asdia P, Febo S, Mannini C, Noè S, Procino L. Innovative configurations for long-span suspension bridges. EACWE 5 Florence, Italy, 19–23 July, 2009

    Google Scholar 

  95. Simiu E, Scanlan R H. Wind Effects on Structures: An Introduction to Wind Engineering. 2nd ed. New York: John Wiley & Sons, 1986

    Google Scholar 

  96. Wang H, TAO Tian-you, CHENG Huai-yu, LI Ai-qun. A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 798–812

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank and express his gratitude to Prof. Dr.-Ing. Timon Rabczuk, the chair of computational mechanics at Bauhaus Universität-Weimar, Germany, for his continuous support and invaluable assistance in providing guidance and consultancy relating to this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Abdul Nariman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nariman, N.A. A novel structural modification to eliminate the early coupling between bending and torsional mode shapes in a cable stayed bridge. Front. Struct. Civ. Eng. 11, 131–142 (2017). https://doi.org/10.1007/s11709-016-0376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-016-0376-4

Keywords

Navigation