Skip to main content
Log in

Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

We propose a method to estimate the natural frequencies of the multi-walled carbon nanotubes (MWCNTs) embedded in an elastic medium. Each of the nested tubes is treated as an individual bar interacting with the adjacent nanotubes through the inter-tube Van der Waals forces. The effect of the elastic medium is introduced through an elastic model. The mathematical model is finally reduced to an eigen value problem and the eigen value problem is solved to arrive at the inter-tube resonances of the MWCNTs. Variation of the natural frequencies with different parameters are studied. The estimated results from the present method are compared with the literature and results are observed to be in close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews R, Weisenberger M C. Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science, 2004, 8(1): 31–37

    Article  Google Scholar 

  2. Zhang Y, Zhao J, Wie N, Jiang J W, Gong Y, Rabczuk T. Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (swnts) on nanoengineering load transfer. Composites. Part B, Engineering, 2013, 45(1): 1714–1721

    Article  Google Scholar 

  3. Ruoff R. Calling all chemists. Nature Nanotechnology, 2008, 3(1): 10–11

    Article  Google Scholar 

  4. Shen W, Yu Y Q, Shu J N, Cui H. A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent: synthesis and intrinsic chemiluminescence activity. Chemical Communications, 2012, 48(23): 2894–2896

    Article  Google Scholar 

  5. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286

    Article  Google Scholar 

  6. Castrol E V, Novoselov K S, Morozov S V, Peres N M R, Santos JMBLd, Nilsson J, Guinea F, Geim A K, Neto A H C. Electronic properties of a biased graphene bilayer. Journal of Physics Condensed Matter, 2010, 22: 175503

    Article  Google Scholar 

  7. Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477(7362): 45–53

    Article  Google Scholar 

  8. Surinder K, Harsha S P. Vibration analysis of clamped-free multiwalled carbon nanotube-based bio-sensors because of various viruses. International Journal of Engineering Research and Technology, 2013, 5(2): 783–790

    Google Scholar 

  9. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  Google Scholar 

  10. Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17–20): 1773–1788

    Article  MATH  MathSciNet  Google Scholar 

  11. Pattabhi B, Gracie R, St’ephane B, Rabczuk T. An adaptive multiscale method for crack propagation. Computational Mechanics, 2013

    Google Scholar 

  12. Budarapu P, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  13. Yang S W, Budarapu P R. Mahapatra D R, Bordas S P A, Rabczuk T. A drkp based adaptive multiscale method for crack growth. Computational Materials Science, 2014 (under review)

    Google Scholar 

  14. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

    Article  Google Scholar 

  15. Raravikar N R, Vijayaraghavan A S, Keblinski P, Schadler L S, Ajayan P M. Embedded carbon-nanotube-stiffened polymer surfaces. Nature, 2005, 1(3): 317–320

    Google Scholar 

  16. Ramaiah B P, Rammohan B, Kumar S V, Babu D S, Raghuatnhan R. Aero-elastic analysis of stiffened composite wing structure. Advances in Vibration Engineering, 2009, 8(3): 255–264

    Google Scholar 

  17. Zhang Y, Zhao J, Jia Y, Mabrouki T, Gong Y, Wei N, Rabczuk T. An analytical solution for large diameter carbon nanotubereinforced composite with functionally graded variation interphase. Composite Structures, 2013, 104: 261–269

    Article  Google Scholar 

  18. Zhang Y, Gao T, Xie S, Ji Q, Yan K, Peng H, Liu Z. Defect-like structures of grapheme on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano, 2011, 5(5): 4014–4022

    Article  Google Scholar 

  19. Zhu W, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H, Tersoff J, Avouris P. Structure and electronic transport in graphene wrinkles. Nano Letters, 2012, 12(7): 3431–3436

    Article  Google Scholar 

  20. Zhang Y, Wei N, Zhao J, Gong Y, Rabczuk T. Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles. Journal of Applied Physics, 2013, 114(6): 063511

    Article  Google Scholar 

  21. Zhang Y, Zhao J, Wei N, Jiang J, Gong Y, Rabczuk T. Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (swnts) on nanoengineering load transfer. Composites. Part B, Engineering, 2013, 45(1): 1714–1721

    Article  Google Scholar 

  22. Jiang JW, Wang B S, Rabczuk T. Why twisting angles are diverse in graphene Moiré patterns? Journal of Applied Physics, 2013, 113(19): 194304

    Article  Google Scholar 

  23. Narendar S, Roy Mahapatra D, Gopalakrishnan S. Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. International Journal of Engineering Science, 2011, 49(6): 509–522

    Article  MATH  MathSciNet  Google Scholar 

  24. Jensen K, Kim K, Zettl A. An atomic-resolution nanomechanical mass sensor. Nature Nanotechnology, 2008, 3(9): 533–537

    Article  Google Scholar 

  25. Jiang J W, Park H S, Rabczuk T. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism. Nanotechnology, 2012, 23(47): 475501

    Article  Google Scholar 

  26. Jiang J W, Wang B S, Park H, Rabczuk T. Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators. Nanotechnology, 2014, 25(2): 025501

    Article  Google Scholar 

  27. Zhao J, Wei N, Fan Z, Jiang JW, Rabczuk T. Mechanical properties of three types of carbon allotropes. Nanotechnology, 2013, 24(9): 095702

    Article  Google Scholar 

  28. Zhao J, Jiang J W, Jia Y, Guo W, Rabczuk T. A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon, 2013, 57: 108–119

    Article  Google Scholar 

  29. Zhao J, Wu J, Jiang J W, Lu L, Zhang Z, Rabczuk T. Thermal conductivity of carbon nanocoils. Applied Physics Letters, 2013, 103(23): 233511

    Article  Google Scholar 

  30. Zhao J, Wang L, Jiang J W, Wang Z, Guo W, Rabczuk T. A comparative study of two molecular mechanics models based on harmonic potentials. Journal of Applied Physics, 2013, 113(6)

    Google Scholar 

  31. Xu K Y, Aifantis E C, Yan Y H. Vibration of double-walled carbon nanotube with different boundary conditions between inner and outer tubes. ASME Journal of Applied Mechanics, 2008, 75(2): 021013

    Article  Google Scholar 

  32. Eishakoff I, Pentaras D. Fundamental natural frequencies of double-walled carbon nanotubes. Journal of Sound and Vibration, 2009, 332: 652–664

    Article  Google Scholar 

  33. Ru C Q. Column buckling of multiwall carbon nanotubes with inter layer radial displacement. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(24): 16962–16967

    Article  Google Scholar 

  34. Lanir Y, Fung Y C B. Fiber composite columns under compression. Journal of Composite Materials, 1972, 6: 387–401

    Google Scholar 

  35. Ru C Q. Encyclopedia of Nanoscience and Nanotechnology, vol.2, chapter Elastic models for carbon nanotubes, American Scientific, Stevenson Ranch, CA, 2004, 2: 731–744

    Google Scholar 

  36. Qu C, He X, Qin Q H. Nonlinear vibration of multi-walled carbon nanotubes. In: Proceedings of the World Congress on Engineering (WCE). Vol II, London, UK, 2007.

    Google Scholar 

  37. Milad H, Reza A. Finite element formulation for the free vibration analysis of embedded double-walled carbon nanotubes based on nonlocal timoshenko beam theory. Journal of Theoretical and Applied Physics, 2013, 7(6) doi: 10.1186/2251-7235-7-6

    Google Scholar 

  38. Alibeigloo A, Shaban M. Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity. Acta Mechanica, 2013, 224(7): 1415–1427

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang C M, Tan V B C, Zhang Y Y. Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. Journal of Sound and Vibration, 2006, 294(4–5): 1060–1072

    Article  Google Scholar 

  40. Ghasemi H, Rafiee R, Zhuang X, Muthu J, Rabczuk T. Uncertainties propagation in metamodel-based probabilistic optimization of cnt/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 2014, 85: 295–305

    Article  Google Scholar 

  41. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of carbon nanotube polyethylene composites. Composites. Part B, Engineering, 2014, 59: 80–95

    Article  Google Scholar 

  42. Horng T L. Transverse vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using bernoulli-fourier method. Journal of Surface Engineered Materials and Advanced Technology, 2012, 02(03): 203–209

    Article  Google Scholar 

  43. Li R, Kardomateas G A. Vibration Characteristics of Multiwalled Carbon Nanotubes Embedded in Elastic Media by a Nonlocal Elastic Shell Model. Journal of Applied Mechanics, 2007, 74(6): 1087–1094

    Article  Google Scholar 

  44. Ru C Q, Yoon J, Mioduchowski A. Vibration of an embedded multiwall carbon nanotube. Composites Science and Technology, 2003, 63(11): 1533–1542

    Article  Google Scholar 

  45. Lourie O, Cox D M, Wagner H D. Buckling and collapse of embedded carbon nanotubes. Physical Review Letters, 1998, 81(8): 1638–1641

    Article  Google Scholar 

  46. Natarajan S, Baiz P M, Bordas S, Rabczuk T, Kerfriden P. Natural frequencies of cracked functionally graded material plates by the extended finite element method. Composite Structures, 2011, 93(11): 3082–3092

    Article  Google Scholar 

  47. Valizadeh N, Natarajan S, Gonzalez-Estrada O A, Rabczuk T, Bui T Q, Bordas S P A. Nurbs-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Composite Structures, 2013, 99: 309–326

    Article  Google Scholar 

  48. Natarajan S, Chakraborty S, Thangavel M, Bordas S, Rabczuk T. Size dependent free flexural vibration behavior of functionally graded nanoplates. Computational Materials Science, 2012, 65: 74–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattabhi R. Budarapu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budarapu, P.R., Yb, S.S., Javvaji, B. et al. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front. Struct. Civ. Eng. 8, 151–159 (2014). https://doi.org/10.1007/s11709-014-0247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-014-0247-9

Keywords

Navigation