Skip to main content
Log in

Graphene-based bipolar plates for polymer electrolyte membrane fuel cells

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Bipolar plates (BPs) are a major component of polymer electrolyte membrane fuel cells (PEMFCs). BPs play a multifunctional character within a PEMFC stack. It is one of the most costly and critical part of the fuel cell, and hence the development of efficient and cost-effective BPs is of much interest for the fabrication of next-generation PEMFCs in future. Owing to high electrical conductivity and chemical inertness, graphene is an ideal candidate to be utilized in BPs. This paper reviews recent advances in the area of graphene-based BPs for PEMFC applications. Various aspects including the momentous functions of BPs in the PEMFC, favorable features of graphene-based BPs, performance evaluation of various reported BPs with their advantages and disadvantages, challenges at commercial level products and future prospects of frontier research in this direction are extensively documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wind J, Späh R, Kaiser W, et al. Metallic bipolar plates for PEM fuel cells. Journal of Power Sources, 2002, 105(2): 256–260

    Article  CAS  Google Scholar 

  2. Bar-On I, Kirchain R, Roth R. Technical cost analysis for PEM fuel cells. Journal of Power Sources, 2002, 109(1): 71–75

    Article  CAS  Google Scholar 

  3. Lv H, Mu S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale, 2014, 6(10): 5063–5074

    Article  CAS  Google Scholar 

  4. Wei M, Jiang M, Liu X, et al. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. Journal of Power Sources, 2016, 327: 384–393

    Article  CAS  Google Scholar 

  5. Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 2003, 114(1): 32–53

    Article  CAS  Google Scholar 

  6. Li X, Sabir I. Review of bipolar plates in PEM fuel cells: Flowfield designs. International Journal of Hydrogen Energy, 2005, 30(4): 359–371

    Article  CAS  Google Scholar 

  7. Davies D, Adcock P, Turpin M, et al. Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources, 2000, 86(1–2): 237–242

    Article  CAS  Google Scholar 

  8. Busick D, Wilson M. Development of composite materials for PEFC bipolar plates. MRS Online Proceedings Library Archive, 1999, 575

  9. Heinzel A, Mahlendorf F, Niemzig O, et al. Injection moulded low cost bipolar plates for PEM fuel cells. Journal of Power Sources, 2004, 131(1–2): 35–40

    Article  CAS  Google Scholar 

  10. Borup R L, Vanderborgh N E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. MRS Online Proceedings Library Archive, 1995, 393

  11. Lee S J, Huang C H, Lai J J, et al. Corrosion-resistant component for PEM fuel cells. Journal of Power Sources, 2004, 131(1–2): 162–168

    Article  CAS  Google Scholar 

  12. Dundar F, Dur E, Mahabunphachai S, et al. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates. Journal of Power Sources, 2010, 195(11): 3546–3552

    Article  CAS  Google Scholar 

  13. Jin C K, Kang C G. Fabrication by vacuum die casting and simulation of aluminum bipolar plates with micro-channels on both sides for proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy, 2012, 37(2): 1661–1676

    Article  CAS  Google Scholar 

  14. Hung J C, Chang D H, Chuang Y. The fabrication of high-aspect-ratio micro-flow channels on metallic bipolar plates using diesinking micro-electrical discharge machining. Journal of Power Sources, 2012, 198: 158–163

    Article  CAS  Google Scholar 

  15. Deprez N, McLachlan D. The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. Journal of Physics D: Applied Physics, 1988, 21(1): 101–107

    Article  CAS  Google Scholar 

  16. Davies D, Adcock P, Turpin M, et al. Bipolar plate materials for solid polymer fuel cells. Journal of Applied Electrochemistry, 2000, 30(1): 101–105

    Article  CAS  Google Scholar 

  17. Dhakate S, Mathur R, Kakati B, et al. Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell. International Journal of Hydrogen Energy, 2007, 32(17): 4537–4543

    Article  CAS  Google Scholar 

  18. Roßberg K, Trapp V. Graphite-based bipolar plates. In: Vielstich W, Gasteiger H A, Lamm A, et al., eds. Handbook of Fuel Cells — Fundamentals, Technology and Applications. John Wiley & Sons, Ltd., 2010

  19. Cho E, Jeon U S, Ha H, et al. Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2004, 125(2): 178–182

    Article  CAS  Google Scholar 

  20. Kuan H C, Ma C C M, Chen K H, et al. Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. Journal of Power Sources, 2004, 134(1): 7–17

    Article  CAS  Google Scholar 

  21. Hodgson D, May B, Adcock P, et al. New lightweight bipolar plate system for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2001, 96(1): 233–235

    Article  CAS  Google Scholar 

  22. He D, Tang H, Kou Z, et al. Engineered graphene materials: synthesis and applications for polymer electrolyte membrane fuel cells. Advanced Materials, 2017, 29(20): 1601741

    Article  CAS  Google Scholar 

  23. Hung Y, Tawfik H, El-Khatib K M, et al. Corrosion and contact resistance measurements of different bipolar plate material for polymer electrolyte membrane fuel cells. International Journal of Alternative Propulsion, 2008, 2(1): 72–85

    Article  CAS  Google Scholar 

  24. Zhang D, Duan L, Guo L, et al. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. International Journal of Hydrogen Energy, 2011, 36(15): 9155–9161

    Article  CAS  Google Scholar 

  25. Bi F, Peng L, Yi P, et al. Multilayered Zr–C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells. Journal of Power Sources, 2016, 314: 58–65

    Article  CAS  Google Scholar 

  26. Yi P, Zhang W, Bi F, et al. Enhanced corrosion resistance and interfacial conductivity of TiCx/a-C nanolayered coatings via synergy of substrate bias voltage for bipolar plates applications in PEMFCs. ACS Applied Materials & Interfaces, 2018, 10(22): 19087–19096

    Article  CAS  Google Scholar 

  27. Jayaraj J, Kim Y, Kim K, et al. Corrosion studies on Fe-based amorphous alloys in simulated PEM fuel cell environment. Science and Technology of Advanced Materials, 2005, 6(3–4): 282–289

    Article  CAS  Google Scholar 

  28. Zhang D, Wang Z, Huang K. Composite coatings with in situ formation for Fe–Ni–Cr alloy as bipolar plate of PEMFC. International Journal of Hydrogen Energy, 2013, 38(26): 11379–11391

    Article  CAS  Google Scholar 

  29. Omrani M, Habibi M, Amrollahi R, et al. Improvement of corrosion and electrical conductivity of 316L stainless steel as bipolar plate by TiN nanoparticle implantation using plasma focus. International Journal of Hydrogen Energy, 2012, 37(19): 14676–14686

    Article  CAS  Google Scholar 

  30. Yoon W, Huang X, Fazzino P, et al. Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008, 179(1): 265–273

    Article  CAS  Google Scholar 

  31. Wang S, Hou M, Zhao Q, et al. Ti/(Ti,Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2017, 26(1): 168–174

    Article  Google Scholar 

  32. Feng K, Shen Y, Sun H, et al. Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2009, 34(16): 6771–6777

    Article  CAS  Google Scholar 

  33. Wang H, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2003, 115(2): 243–251

    Article  CAS  Google Scholar 

  34. Silva R, Franchi D, Leone A, et al. Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells. Electrochimica Acta, 2006, 51(17): 3592–3598

    Article  CAS  Google Scholar 

  35. Joseph S, McClure J, Chianelli R, et al. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). International Journal of Hydrogen Energy, 2005, 30(12): 1339–1344

    Article  CAS  Google Scholar 

  36. Wang L, Sun J, Kang B, et al. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate. Journal of Power Sources, 2014, 246: 775–782

    Article  CAS  Google Scholar 

  37. Wang S H, Peng J, Lui WB, et al. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells. Journal of Power Sources, 2006, 162(1): 486–491

    Article  CAS  Google Scholar 

  38. Gamburzev S, Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 2002, 107(1): 5–12

    Article  CAS  Google Scholar 

  39. Kumar A, Reddy R G. Materials and design development for bipolar/end plates in fuel cells. Journal of Power Sources, 2004, 129(1): 62–67

    Article  CAS  Google Scholar 

  40. Cho E, Jeon U S, Hong S A, et al. Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. Journal of Power Sources, 2005, 142(1–2): 177–183

    Article  CAS  Google Scholar 

  41. Yi P, Peng L, Feng L, et al. Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates. Journal of Power Sources, 2010, 195(20): 7061–7066

    Article  CAS  Google Scholar 

  42. Lee Y H, Li S M, Tseng C J, et al. Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22201–22207

    Article  CAS  Google Scholar 

  43. Tseng C J, Tsai B T, Liu Z S, et al. A PEM fuel cell with metal foam as flow distributor. Energy Conversion and Management, 2012, 62: 14–21

    Article  CAS  Google Scholar 

  44. Lee S J, Huang C H, Chen Y P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. Journal of Materials Processing Technology, 2003, 140(1–3): 688–693

    Article  CAS  Google Scholar 

  45. Gladczuk L, Joshi C, Patel A, et al. Corrosion-resistant tantalum coatings for PEM fuel cell bipolar plates. MRS Online Proceedings Library Archive, 2002, 756

  46. Ma L, Warthesen S, Shores D A. Evaluation of materials for bipolar plates in PEMFCs. Journal of New Materials for Electrochemical Systems, 2000, 3(3): 221–228

    CAS  Google Scholar 

  47. Wang H, Turner J. Reviewing metallic PEMFC bipolar plates. Fuel Cells, 2010, 10(4): 510–519

    Article  CAS  Google Scholar 

  48. Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors. Journal of Power Sources, 1999, 80(1–2): 235–241

    Article  CAS  Google Scholar 

  49. Hornung R, Kappelt G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. Journal of Power Sources, 1998, 72(1): 20–21

    Article  CAS  Google Scholar 

  50. Scholta J, Rohland B, Trapp V, et al. Investigations on novel low-cost graphite composite bipolar plates. Journal of Power Sources, 1999, 84(2): 231–234

    Article  CAS  Google Scholar 

  51. Scholta J, Berg N, Wilde P, et al. Development and performance of a 10 kW PEMFC stack. Journal of Power Sources, 2004, 127(1–2): 206–212

    Article  CAS  Google Scholar 

  52. Besmann T M, Klett J W, Burchell T D. Carbon composite for a PEM fuel cell bipolar plate. MRS Online Proceedings Library Archive, 1997, 496

  53. Cunningham N, Guay D, Dodelet J, et al. New materials and procedures to protect metallic PEM fuel cell bipolar plates. Journal of the Electrochemical Society, 2002, 149(7): A905–A911

    Article  CAS  Google Scholar 

  54. Gautam A, Ram S. Shape-controlled silver metal of nanospheroids from a polymer-assisted autocombustion reaction in open air. Journal of Alloys and Compounds, 2008, 463(1–2): 428–434

    Article  CAS  Google Scholar 

  55. Chang H, Koschany P, Lim C, et al. Materials and processes for light weight and high power density PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2000, 3(1): 55–60

    CAS  Google Scholar 

  56. Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell — a review. Journal of Power Sources, 2007, 163(2): 755–767

    Article  CAS  Google Scholar 

  57. Brady M, Weisbrod K, Zawodzinski C, et al. Assessment of thermal nitridation to protect metal bipolar plates in polymer electrolyte membrane fuel cells. Electrochemical and Solid-State Letters, 2002, 5(11): A245–A247

    Article  CAS  Google Scholar 

  58. Brady M P, Weisbrod K, Paulauskas I, et al. Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates. Scripta Materialia, 2004, 50(7): 1017–1022

    Article  CAS  Google Scholar 

  59. Li M, Luo S, Zeng C, et al. Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments. Corrosion Science, 2004, 46(6): 1369–1380

    Article  CAS  Google Scholar 

  60. Middelman E, Kout W, Vogelaar B, et al. Bipolar plates for PEM fuel cells. Journal of Power Sources, 2003, 118(1–2): 44–46

    Article  CAS  Google Scholar 

  61. Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 2014, 265: 370–390

    Article  CAS  Google Scholar 

  62. Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2005, 30(12): 1297–1302

    Article  CAS  Google Scholar 

  63. Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

    Article  CAS  Google Scholar 

  64. Dihrab S S, Sopian K, Alghoul M, et al. Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renewable & Sustainable Energy Reviews, 2009, 13(6–7): 1663–1668

    Article  CAS  Google Scholar 

  65. Yuan X Z, Wang H, Zhang J, et al. Bipolar plates for PEM fuel cells-from materials to processing. Journal of New Materials for Electrochemical Systems, 2005, 8(4): 257

    CAS  Google Scholar 

  66. Iwan A, Malinowski M, Pasciak G. Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renewable & Sustainable Energy Reviews, 2015, 49: 954–967

    Article  CAS  Google Scholar 

  67. Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Article  CAS  Google Scholar 

  68. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  CAS  Google Scholar 

  69. Singh R S, Nalla V, Chen W, et al. Laser patterning of epitaxial graphene for Schottky junction photodetectors. ACS Nano, 2011, 5(7): 5969–5975

    Article  CAS  Google Scholar 

  70. Singh R S, Nalla V, Chen W, et al. Photoresponse in epitaxial graphene with asymmetric metal contacts. Applied Physics Letters, 2012, 100(9): 093116 (3 pages)

    Article  CAS  Google Scholar 

  71. Singh R S, Wang X, Chen W, et al. Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: Evidence for two-dimensional magnetotransport. Applied Physics Letters, 2012, 101(18): 183105 (3 pages)

    Article  CAS  Google Scholar 

  72. Singh R S, Li D, Xiong Q, et al. Anomalous photoresponse in the deep-ultraviolet due to resonant excitonic effects in oxygen plasma treated few-layer graphene. Carbon, 2016, 106: 330–335

    Article  CAS  Google Scholar 

  73. Santoso I, Singh R S, Gogoi P K, et al. Tunable optical absorption and interactions in graphene via oxygen plasma. Physical Review B, 2014, 89(7): 075134

    Article  CAS  Google Scholar 

  74. Wu Z S, Ren W, Gao L, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 2009, 3(2): 411–417

    Article  CAS  Google Scholar 

  75. Peigney A, Laurent C, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507–514

    Article  CAS  Google Scholar 

  76. Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Article  CAS  Google Scholar 

  77. Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Article  CAS  Google Scholar 

  78. Williams J R, Dicarlo L, Marcus C M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science, 2007, 317 (5838): 638–641

    Article  CAS  Google Scholar 

  79. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  CAS  Google Scholar 

  80. Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565

    Article  CAS  Google Scholar 

  81. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568

    Article  CAS  Google Scholar 

  82. Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339

    Article  CAS  Google Scholar 

  83. Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 2009, 4(1): 30–33

    Article  CAS  Google Scholar 

  84. Obraztsov A N. Chemical vapour deposition: Making graphene on a large scale. Nature Nanotechnology, 2009, 4(4): 212–213

    Article  CAS  Google Scholar 

  85. Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials, 2008, 7(5): 406–411

    Article  CAS  Google Scholar 

  86. Kou Z, Meng T, Guo B, et al. A generic conversion strategy: From 2D metal carbides (MxCy) to M-self-doped graphene toward high-efficiency energy applications. Advanced Functional Materials, 2017, 27(8): 1604904

    Article  CAS  Google Scholar 

  87. Amiinu I S, Zhang J, Kou Z, et al. Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Applied Materials & Interfaces, 2016, 8(43): 29408–29418

    Article  CAS  Google Scholar 

  88. He D, Kou Z, Xiong Y, et al. Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts. Carbon, 2014, 66: 312–319

    Article  CAS  Google Scholar 

  89. Kyhl L, Nielsen S F, Čabo A G, et al. Graphene as an anticorrosion coating layer. Faraday Discussions, 2015, 180: 495–509

    Article  CAS  Google Scholar 

  90. Zhang Y, Zhang H, Wang B, et al. Role of wrinkles in the corrosion of graphene domain-coated Cu surfaces. Applied Physics Letters, 2014, 104(14): 143110 (3 pages)

    Article  CAS  Google Scholar 

  91. Xu W, Zhao K, Zhang L, et al. SnS2@graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries. Journal of Alloys and Compounds, 2016, 654: 357–362

    Article  CAS  Google Scholar 

  92. Hsieh Y P, Hofmann M, Chang K W, et al. Complete corrosion inhibition through graphene defect passivation. ACS Nano, 2014, 8(1): 443–448

    Article  CAS  Google Scholar 

  93. Wlasny I, Dabrowski P, Rogala M, et al. Role of graphene defects in corrosion of graphene-coated Cu(111) surface. Applied Physics Letters, 2013, 102(11): 111601 (3 pages)

    Article  CAS  Google Scholar 

  94. Rozada R, Paredes J I, Villar-Rodil S, et al. Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Research, 2013, 6(3): 216–233

    Article  CAS  Google Scholar 

  95. Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324 (5932): 1312–1314

    Article  CAS  Google Scholar 

  96. Prasai D, Tuberquia J C, Harl R R, et al. Graphene: corrosion-inhibiting coating. ACS Nano, 2012, 6(2): 1102–1108

    Article  CAS  Google Scholar 

  97. Ye X, Lin Z, Zhang H, et al. Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon, 2015, 94: 326–334

    Article  CAS  Google Scholar 

  98. Nazarova M, Stora T, Zhukov A, et al. Growth of graphene on tantalum and its protective properties. Carbon, 2018, 139: 29–34

    Article  CAS  Google Scholar 

  99. Pu N W, Shi G N, Liu Y M, et al. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. Journal of Power Sources, 2015, 282: 248–256

    Article  CAS  Google Scholar 

  100. Antunes R A, Oliveira M C L, Ett G, et al. Corrosion of metal bipolar plates for PEM fuel cells: a review. International Journal of Hydrogen Energy, 2010, 35(8): 3632–3647

    Article  CAS  Google Scholar 

  101. Sudagar J, Lian J, Sha W. Electroless nickel, alloy, composite and nano coatings — A critical review. Journal of Alloys and Compounds, 2013, 571: 183–204

    Article  CAS  Google Scholar 

  102. Stoot A C, Camilli L, Spiegelhauer S A, et al. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell. Journal of Power Sources, 2015, 293: 846–851

    Article  CAS  Google Scholar 

  103. Ren Y, Anisur M, Qiu W, et al. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study. Journal of Power Sources, 2017, 362: 366–372

    Article  CAS  Google Scholar 

  104. Lee Y H, Noh S, Lee J H, et al. Durable graphene-coated bipolar plates for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2017, 42(44): 27350–27353

    Article  CAS  Google Scholar 

  105. Zheng Z, Liu Y, Bai Y, et al. Fabrication of biomimetic hydrophobic patterned graphene surface with ecofriendly anticorrosion properties for Al alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500: 64–71

    Article  CAS  Google Scholar 

  106. Mišković-Stanković V, Jevremović I, Jung I, et al. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon, 2014, 75: 335–344

    Article  CAS  Google Scholar 

  107. Kim Y J, Kim D H, Kim J S, et al. Electro and surface properties of graphene-modified stainless steel for PEMFC bipolar plates. Advanced Materials Research, 2014, 167–170

    Article  CAS  Google Scholar 

  108. Staudenmaier L. Verfahren zur darstellung der graphitsäure. European Journal of Inorganic Chemistry, 1899, 32(2): 1394–1399 (in German)

    CAS  Google Scholar 

  109. Lv J, Tongxiang L, Chen W. The effects of molybdenum and reduced graphene oxide on corrosion resistance of amorphous nickel–phosphorus as bipolar plates in PEMFC environment. International Journal of Hydrogen Energy, 2016, 41(23): 9738–9745

    Article  CAS  Google Scholar 

  110. Raghupathy Y, Kamboj A, Rekha M, et al. Copper–graphene oxide composite coatings for corrosion protection of mild steel in 3.5% NaCl. Thin Solid Films, 2017, 636: 107–115

    Article  CAS  Google Scholar 

  111. Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929–2937

    CAS  Google Scholar 

  112. Jang H, Kim J H, Kang H, et al. Reduced graphene oxide as a protection layer for Al. Applied Surface Science, 2017, 407: 1–7

    Article  CAS  Google Scholar 

  113. Pavan A S S, Ramanan S R. A study on corrosion resistant graphene films on low alloy steel. Applied Nanoscience, 2016, 6(8): 1175–1181

    Article  CAS  Google Scholar 

  114. Liu Y, Zhang J, Li S, et al. Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate. RSC Advances, 2014, 4(85): 45389–45396

    Article  CAS  Google Scholar 

  115. Liu J, Hua L, Li S, et al. Graphene dip coatings: An effective anticorrosion barrier on aluminum. Applied Surface Science, 2015, 327: 241–245

    Article  CAS  Google Scholar 

  116. Berlia R, Kumar M K P, Srivastava C. Electrochemical behavior of Sn–graphene composite coating. RSC Advances, 2015, 5(87): 71413–71418

    Article  CAS  Google Scholar 

  117. Liu C, Su F, Liang J. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance. Applied Surface Science, 2015, 351: 889–896

    Article  CAS  Google Scholar 

  118. Sadhir M H, Saranya M, Aravind M, et al. Comparison of in situ and ex situ reduced graphene oxide reinforced electroless nickel phosphorus nanocomposite coating. Applied Surface Science, 2014, 320: 171–176

    Article  CAS  Google Scholar 

  119. Amani H, Mostafavi E, Arzaghi H, et al. Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomaterials Science & Engineering, 2019, 5(1): 193–214

    Article  CAS  Google Scholar 

  120. Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 424–428

    Article  CAS  Google Scholar 

  121. Yavari F, Chen Z, Thomas A V, et al. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Scientific Reports, 2011, 1(1): 166

    Article  CAS  Google Scholar 

  122. Wang J K, Xiong G M, Zhu M, et al. Polymer-enriched 3D graphene foams for biomedical applications. ACS Applied Materials & Interfaces, 2015, 7(15): 8275–8283

    Article  CAS  Google Scholar 

  123. Loeblein M, Bolker A, Tsang S H, et al. 3D graphene-infused polyimide with enhanced electrothermal performance for longterm flexible space applications. Small, 2015, 11(48): 6425–6434

    Article  CAS  Google Scholar 

  124. Chen K, Shi L, Zhang Y, et al. Scalable chemical-vapourdeposition growth of three-dimensional graphene materials towards energy-related applications. Chemical Society Reviews, 2018, 47(9): 3018–3036

    Article  CAS  Google Scholar 

  125. Wu Z S,Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135

    Article  CAS  Google Scholar 

  126. Sim Y, Kwak J, Kim S Y, et al. Formation of 3D graphene–Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(4): 1504–1512

    Article  CAS  Google Scholar 

  127. Jiang X, Drzal L T. Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates. Journal of Power Sources, 2012, 218: 297–306

    Article  CAS  Google Scholar 

  128. Plengudomkit R, Okhawilai M, Rimdusit S. Highly filled graphene–benzoxazine composites as bipolar plates in fuel cell applications. Polymer Composites, 2016, 37(6): 1715–1727

    Article  CAS  Google Scholar 

  129. Rimdusit S, Jubsilp C, Tiptipakorn S. Alloys and Composites of Polybenzoxazines: Properties and Applications. Springer, 2013

  130. Onyu K, Yeetsorn R, Fowler M, et al. Evaluation of the possibility for using polypropylene/graphene composite as bipolar plate material instead of polypropylene/graphite composite. KMUTNB: International Journal of Applied Science and Technology, 2016, 9(2): 99–111

    Google Scholar 

  131. Adloo A, Sadeghi M, Masoomi M, et al. High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells. Renewable Energy, 2016, 99: 867–874

    Article  CAS  Google Scholar 

  132. Kakati B K, Ghosh A, Verma A. Graphene reinforced composite bipolar plate for polymer electrolyte membrane fuel cell. In: American Society of Mechanical Engineers. ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability, 2011, 301–307

  133. Ghosh A, Goswami P, Mahanta P, et al. Effect of carbon fiber length and graphene on carbon–polymer composite bipolar plate for PEMFC. Journal of Solid State Electrochemistry, 2014, 18(12): 3427–3436

    Article  CAS  Google Scholar 

  134. Jiang L, Syed J A, Lu H, et al. In-situ electrodeposition of conductive polypyrrole–graphene oxide composite coating for corrosion protection of 304SS bipolar plates. Journal of Alloys and Compounds, 2019, 770: 35–47

    Article  CAS  Google Scholar 

  135. Singh B P, Nayak S, Nanda K K, et al. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 2013, 61: 47–56

    Article  CAS  Google Scholar 

  136. Singh B P, Jena B K, Bhattacharjee S, et al. Development of oxidation and corrosion resistance hydrophobic graphene oxide–polymer composite coating on copper. Surface and Coatings Technology, 2013, 232: 475–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the work of all researchers in this field that helped us compile this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sevak Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.S., Gautam, A. & Rai, V. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Front. Mater. Sci. 13, 217–241 (2019). https://doi.org/10.1007/s11706-019-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0465-0

Keywords

Navigation