Skip to main content
Log in

Towards full repair of defects in reduced graphene oxide films by two-step graphitization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal has so far remained elusive. Here, we demonstrate that the highly defective structure of reduced graphene oxide sheets assembled into free-standing, paper-like films can be fully repaired by means of high temperature annealing (graphitization). Characterization of the films by X-ray photoelectron and Raman spectroscopy, X-ray diffraction and scanning tunneling microscopy indicated that the main stages in the transformation of the films were (i) complete removal of oxygen functional groups and generation of atomic vacancies (up to 1,500 °C), and (ii) vacancy annihilation and coalescence of adjacent overlapping sheets to yield continuous polycrystalline layers (1,800–2,700 °C) similar to those of highly oriented graphites. The prevailing type of defect in the polycrystalline layers were the grain boundaries separating neighboring domains, which were typically a few hundred nanometers in lateral size, exhibited long-range graphitic order and were virtually free of even atomic-sized defects. The electrical conductivity of the annealed films was as high as 577,000 S·m−1, which is by far the largest value reported to date for any material derived from graphene oxide, and strategies for further improvement without the need to resort to higher annealing temperatures are suggested. Overall, this work opens the prospect of truly achieving a complete restoration of the carbon lattice in graphene oxide materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  2. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  3. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  CAS  Google Scholar 

  4. Luo, B.; Liu, S. M.; Zhi, L. J. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 2012, 8, 630–646.

    Article  CAS  Google Scholar 

  5. Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.

    Article  CAS  Google Scholar 

  6. Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012, 6, 2904–2916.

    Article  CAS  Google Scholar 

  7. Machado, B. F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012, 2, 54–75.

    Article  CAS  Google Scholar 

  8. Feng, L. Z.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine 2011, 6, 317–324.

    Article  CAS  Google Scholar 

  9. Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

    Article  CAS  Google Scholar 

  10. Wei, D. C.; Liu, Y. Q. Controllable synthesis of graphene and its applications. Adv. Mater. 2010, 22, 3225–3241.

    Article  CAS  Google Scholar 

  11. Guo, S. J.; Dong, S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

    Article  CAS  Google Scholar 

  12. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  CAS  Google Scholar 

  13. Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-oxidant for reduction of graphene oxide. J. Mater. Chem. 2011, 21, 10907–10914.

    Article  CAS  Google Scholar 

  14. Mao, S.; Pu, H. H.; Chen, J. H. Graphene oxide and its reduction: Modeling and experimental progress. RSC Adv. 2012, 2, 2643–2662.

    Article  CAS  Google Scholar 

  15. Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.

    Article  CAS  Google Scholar 

  16. Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduced graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50, 1853–1860.

    Article  CAS  Google Scholar 

  17. Akhavan, O.; Kalaee, M.; Alavi, Z. S.; Ghiasi, S. M. A.; Esfandiar, A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 2012, 50, 3015–3025.

    Article  CAS  Google Scholar 

  18. Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.

    Article  CAS  Google Scholar 

  19. Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392–2415.

    Article  CAS  Google Scholar 

  20. Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.

    Article  Google Scholar 

  21. Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.

    Article  CAS  Google Scholar 

  22. Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.

    Article  Google Scholar 

  23. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583.

    Article  CAS  Google Scholar 

  24. López, V.; Sundaram, R. S.; Gómez-Navarro, C.; Olea, D.; Burghard, M.; Gómez-Herrero, J.; Zamora, F.; Kern, K. Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers. Adv. Mater. 2009, 21, 4683–4686.

    Article  Google Scholar 

  25. Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.

    Article  CAS  Google Scholar 

  26. Cheng, M.; Yang, R.; Zhang, L. C.; Shi, Z. W.; Yang, W.; Wang, D. M.; Xie, G. B.; Shi, D. X.; Zhang, G. Y. Restoration of graphene from graphene oxide by defect repair. Carbon 2012, 50, 2581–2587.

    Article  CAS  Google Scholar 

  27. Kholmanov, I. N.; Edgeworth, J.; Cavaliere, E.; Gavioli, L.; Magnuson, C.; Ruoff, R. S. Healing of structural defects in the topmost layer of graphite by chemical vapor deposition. Adv. Mater. 2011, 23, 1675–1678.

    Article  CAS  Google Scholar 

  28. Matuyama, E. Pyrolysis of graphitic acid. J. Phys. Chem. 1954, 58, 215–219.

    Article  Google Scholar 

  29. Maire, J.; Colas, H.; Maillard, P. Membranes de carbone et de graphite et leurs propietes. Carbon 1968, 6, 555–560.

    Article  CAS  Google Scholar 

  30. Toyoda, S.; Yamakawa, T.; Kobayashi, K.; Yamada, Y. Anisotropy of g-value in a graphitized carbon film. Carbon 1972, 10, 646–647.

    Article  CAS  Google Scholar 

  31. Matsuo, Y.; Sugie, Y. Preparation, structure and electrochemical property of pyrolytic carbon from graphite oxide. Carbon 1998, 36, 301–303.

    Article  CAS  Google Scholar 

  32. Matsuo, Y.; Sugie, Y. Pyrolytic carbon from graphite oxide as an anode of lithium-ion cells in 1 M LiClO4 propylene carbonate solution. Electrochem. Solid-State Lett. 1998, 1, 204–206.

    Article  CAS  Google Scholar 

  33. Matsuo, Y.; Sugie, Y. Electrochemical lithiation of carbon prepared from pyrolysis of graphite oxide. J. Electrochem. Soc. 1999, 146, 2011–2014.

    Article  CAS  Google Scholar 

  34. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  CAS  Google Scholar 

  35. Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010, 48, 509–519.

    Article  CAS  Google Scholar 

  36. Chen, C. M.; Huang, J. Q.; Zhang, Q.; Gong, W. Z.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 2012, 50, 659–667.

    Article  CAS  Google Scholar 

  37. Oberlin, A. Carbonization and graphitization. Carbon 1984, 22, 521–541.

    Article  CAS  Google Scholar 

  38. Long, D. H.; Li, W.; Qiao, W. M.; Miyawaki, J.; Yoon, S. H.; Mochida, I.; Ling, L. C. Graphitization behaviour of chemically derived graphene sheets. Nanoscale 2011, 3, 3652–3656.

    Article  CAS  Google Scholar 

  39. Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N. D.; Jin, M. H.; Lee, Y. H.; Nam, J. D. Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2011, 24, 594–599.

    Article  Google Scholar 

  40. Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.

    Article  CAS  Google Scholar 

  41. Liang, J. J.; Huang, Y.; Oh, J.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011, 21, 3778–3784.

    Article  CAS  Google Scholar 

  42. Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y. W.; Ji, H. X.; Murali, S.; Wu, Y. P.; Perales, S.; Clevenger, B.; Ruoff, R. S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 2012, 12, 1806–1812.

    Article  CAS  Google Scholar 

  43. Gao, H. C.; Wang, Y. X.; Xiao, F.; Ching, C. B.; Duan, H. W. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. J. Phys. Chem. C 2012, 116, 7719–7725.

    Article  CAS  Google Scholar 

  44. Hummers Jr., W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  CAS  Google Scholar 

  45. Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 2009, 25, 5957–5968.

    Article  CAS  Google Scholar 

  46. Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.

    Article  Google Scholar 

  47. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  CAS  Google Scholar 

  48. Paci, J. T.; Belytschko, T.; Schatz, G. C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J. Phys. Chem. C 2007, 111, 18099–18111.

    Article  CAS  Google Scholar 

  49. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587.

    Article  CAS  Google Scholar 

  50. Solís-Fernández, P.; Rozada, R.; Paredes, J. I.; Villar-Rodil, S.; Fernández-Merino, M. J.; Guardia, L.; Martínez-Alonso, A.; Tascón, J. M. D. Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. J. Alloy. Compd. 2012, 536, S532–S537.

    Article  Google Scholar 

  51. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  52. Kim, M. C.; Hwang, G. S.; Ruoff, R. S. Epoxide reduction with hydrazine on graphene: A first principles study. J. Chem. Phys. 2009, 131, 064704.

    Article  Google Scholar 

  53. Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.

    Article  CAS  Google Scholar 

  54. Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389.

    Article  CAS  Google Scholar 

  55. Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.

    Article  CAS  Google Scholar 

  56. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

    Article  CAS  Google Scholar 

  57. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.

    Article  CAS  Google Scholar 

  58. Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.

    Article  CAS  Google Scholar 

  59. Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.

    Article  Google Scholar 

  60. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

    Article  CAS  Google Scholar 

  61. Lahaye, J.; Ehrburger, P. Fundamental Issues in Control of Carbon Gasification Reactivity; Kluwer Academic Publishers: Dordrecht, 1991.

    Book  Google Scholar 

  62. Cuesta, A.; Martínez-Alonso, A.; Tascón, J. M. D. Carbon reactivity in an oxygen plasma: A comparison with reactivity in molecular oxygen. Carbon 2001, 39, 1135–1146.

    Article  CAS  Google Scholar 

  63. Solís-Fernández, P.; Paredes, J. I.; Villar-Rodil, S.; Guardia, L.; Fernández-Merino, M. J.; Dobrik, G.; Biró, L. P.; Martínez-Alonso, A.; Tascón, J. M. D. Global and local oxidation behavior of reduced graphene oxide. J. Phys. Chem. C 2011, 115, 7956–7966.

    Article  Google Scholar 

  64. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2010, 5, 26–41.

    Article  Google Scholar 

  65. Spain, I. L. Electronic transport properties of graphite, carbons, and related materials. In Chemistry and Physics of Carbon. Vol. 16. Walker Jr., P. L.; Thrower, P. A., Eds.; New York: Marcel Dekker, 1981; pp 119–304.

    Google Scholar 

  66. Morelli, D. T.; Uher, C. T 2 dependence of the in-plane resistivity of graphite at very low temperatures. Phys. Rev. B 1984, 30, 1080–1082.

    Article  CAS  Google Scholar 

  67. Nakajima, T.; Nakane, K.; Kawaguchi, M.; Watanabe, N. Preparation, structure and electrical conductivity of graphite intercalation compound with titanium fluoride. Carbon 1987, 25, 685–689.

    Article  CAS  Google Scholar 

  68. Hahn, J. R.; Kang, H. Vacancy and interstitial defects at graphite surfaces: Scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation. Phys. Rev. B 1999, 60, 6007–6017.

    Article  CAS  Google Scholar 

  69. Solís-Fernández, P.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. New atomic-scale features in graphite surfaces treated in a dielectric barrier discharge plasma. Carbon 2008, 46, 1364–1367.

    Article  Google Scholar 

  70. Paredes, J. I.; Solís-Fernández, P.; Martinez-Alonso, A.; Tascón, J. M. D. Atomic vacancy engineering of graphitic surfaces: Controlling the generation and harnessing the migration of the single vacancy. J. Phys. Chem. C 2009, 113, 10249–10255.

    Article  CAS  Google Scholar 

  71. Wong, H. S.; Durkan, C.; Chandrasekhar, N. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. ACS Nano 2009, 3, 3455–3462.

    Article  CAS  Google Scholar 

  72. Magonov, S. N.; Whangbo, M. H. Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis; VCH: Weinheim, 1996.

    Google Scholar 

  73. Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. Early stages of plasma oxidation of graphite: Nanoscale physicochemical changes as detected by scanning probe microscopies. Langmuir 2002, 18, 4314–4323.

    Article  CAS  Google Scholar 

  74. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.

    Article  CAS  Google Scholar 

  75. Barreiro, A.; Börrnert, F.; Rümmeli, M. H.; Büchner, B.; Vandersypen, L. M. K. Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 2012, 12, 1873–1878.

    Article  CAS  Google Scholar 

  76. Kurasch, S.; Kotakoski, J.; Lehtinen, O.; Skákalová, V.; Smet, J.; Krill, C. E.; Krasheninnikov, A. V.; Kaiser, U. Atom-by-atom observation of grain boundary migration in graphene. Nano Lett. 2012, 12, 3168–3173.

    Article  CAS  Google Scholar 

  77. Simonis, P.; Goffaux, C.; Thiry, P. A.; Biró, L. P.; Lambin, P.; Meunier, V. STM study of a grain boundary in graphite. Surf. Sci. 2002, 511, 319–322.

    Article  CAS  Google Scholar 

  78. Ohler, M.; Sanchez del Rio, M.; Tuffanelli, A.; Gambaccini, M.; Taibi, A.; Fantini, A.; Pareschi, G. X-ray topographic determination of the granular structure in a graphite mosaic crystal: A three-dimensional reconstruction. J. Appl. Cryst. 2000, 33, 1023–1030.

    Article  CAS  Google Scholar 

  79. Dong, X. C.; Su, C. Y.; Zhang, W. J.; Zhao, J. W.; Ling, Q. D.; Huang, W.; Chen, P.; Li, L. J. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Phys. Chem. Chem. Phys., 2010, 12, 2164–2169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Paredes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozada, R., Paredes, J.I., Villar-Rodil, S. et al. Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Res. 6, 216–233 (2013). https://doi.org/10.1007/s12274-013-0298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0298-6

Keywords

Navigation