Skip to main content
Log in

Advanced engineering and biomimetic materials for bone repair and regeneration

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGowen J, Raisz L, Noonan A, et al. Bone health and osteoporosis: a report of the surgeon general. United States Department of Health and Human Services, 2004: 69–87

    Google Scholar 

  2. Bren L. Joint replacement: an inside look. FDA Consumer, 2004, 38(2): 12–19

    Google Scholar 

  3. American Academy of Orthopaedic Surgeons. [Internet] Rosemont. IL: AAOS, 2008

  4. ATA Global Biomedical Materials Congress. Shanghai: Asia Technology Alliance, 2013

  5. Balasundaram G. Nanomaterials for better orthopedics. In: Webster T J, ed. Nanotechnology for the Regeneration of Hard and Soft Tissues. Hackensack, New Jersey; London: World Scientific, 2007, 53–78

    Chapter  Google Scholar 

  6. Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia, 2007, 3(6): 997–1006

    Article  CAS  Google Scholar 

  7. He G, Liu P, Tan Q. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5(1): 16–31

    Article  CAS  Google Scholar 

  8. Kato K, Ochiai S, Yamamoto A, et al. Novel multilayer Ti foam with cortical bone strength and cytocompatibility. Acta Biomaterialia, 2013, 9(3): 5802–5809

    Article  CAS  Google Scholar 

  9. Arciniegas M, Aparicio C, Manero J, et al. Low elastic modulus metals for joint prosthesis: Tantalum and nickel-titanium foams. Journal of the European Ceramic Society, 2007, 27(11): 3391–3398

    Article  CAS  Google Scholar 

  10. Demetriou M D, Wiest A, Hofmann D C, et al. Amorphous metals for hard-tissue prosthesis. JOM, 2010, 62(2): 83–91

    Article  CAS  Google Scholar 

  11. Ashby M, Greer A. Metallic glasses as structural materials. Scripta Materialia, 2006, 54(3): 321–326

    Article  CAS  Google Scholar 

  12. Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20136–20140

    Article  CAS  Google Scholar 

  13. Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008, 451(7182): 1085–1089

    Article  CAS  Google Scholar 

  14. Hashimoto K. 2002 WR Whitney Award Lecture: In pursuit of new corrosion-resistant alloys. Corrosion, 2002, 58(9): 715–722

    Article  CAS  Google Scholar 

  15. Chen Q, Liu L, Zhang S M. The potential of Zr-based bulk metallic glasses as biomaterials. Frontiers of Materials Science in China, 2010, 4(1): 34–44

    Article  Google Scholar 

  16. Li J, Shi L-L, Zhu Z-D, et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses. Materials Science and Engineering C, 2013, 33(4): 2113–2121

    Article  CAS  Google Scholar 

  17. Li H F, Wang Y B, Zheng Y F, et al. Osteoblast response on Tiand Zr-based bulk metallic glass surfaces after sand blasting modification. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100B(7): 1721–1728

    Article  CAS  Google Scholar 

  18. Yan F, Liu G, Tao N, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Materialia, 2012, 60(3): 1059–1071

    Article  CAS  Google Scholar 

  19. Ye W, Li Y, Wang F. The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization. Electrochimica Acta, 2009, 54(4): 1339–1349

    Article  CAS  Google Scholar 

  20. de Oliveira P T, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials, 2004, 25(3): 403–413

    Article  Google Scholar 

  21. Cohen A, Liu-Synder P, Storey D, et al. Decreased fibroblast and increased osteoblast functions on ionic plasma deposited nanostructured Ti coatings. Nanoscale Research Letters, 2007, 2(8): 385–390

    Article  CAS  Google Scholar 

  22. Ward B C, Webster T J. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. Biomaterials, 2006, 27(16): 3064–3074

    Article  CAS  Google Scholar 

  23. Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25(19): 4731–4739

    Article  CAS  Google Scholar 

  24. Nakanishi Y, Miura H, Tokunaga K, et al. Nano-level surface texturing on Co-Cr-Mo alloy inhibits macrophage activation in joint prostheses. The Bone & Joint Journal, 2013, 95-B(Supp 15): 278

    Google Scholar 

  25. Huang H H, Pan S J, Lai Y L, et al. Osteoblast-like cell initial adhesion onto a network-structured titanium oxide layer. Scripta Materialia, 2004, 51(11): 1017–1021

    Article  CAS  Google Scholar 

  26. Yao C, Perla V, McKenzie J L, et al. Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion. Journal of Biomedical Nanotechnology, 2005, 1(1): 68–73

    Article  CAS  Google Scholar 

  27. Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 2004, 25(18): 4087–4103

    Article  CAS  Google Scholar 

  28. Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomaterialia, 2007, 3(4): 573–585

    Article  CAS  Google Scholar 

  29. Yao C, Slamovich E B, Webster T J. Increased osteoblast adhesion on nano-rough anodized titanium and CoCrMo. NSTI Nanotechnology Conference and Trade Show — NSTI Nanotech, Technical Proceedings, 2006, 119–122

    Google Scholar 

  30. Popat K C, Eltgroth M, Latempa T J, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials, 2007, 28(32): 4880–4888

    Article  CAS  Google Scholar 

  31. Gruen D M. Nanocrystalline diamond films. Annual Review of Materials Science, 1999, 29(1): 211–259

    Article  CAS  Google Scholar 

  32. Yang L, Zhang L, Webster T J. Carbon nanostructures for orthopedic medical applications. Nanomedicine, 2011, 6(7): 1231–1244

    Article  CAS  Google Scholar 

  33. Bajaj P, Akin D, Gupta A, et al. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomedical Microdevices, 2007, 9(6): 787–794

    Article  CAS  Google Scholar 

  34. Pareta R, Yang L, Kothari A, et al. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion. Journal of Biomedical Materials Research Part A, 2010, 95A(1): 129–136

    Article  CAS  Google Scholar 

  35. Yang L, Sheldon B W, Webster T J. The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials, 2009, 30(20): 3458–3465

    Article  CAS  Google Scholar 

  36. Yang L, Sheldon B W, Webster T J. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. Journal of Biomedical Materials Research Part A, 2009, 91A(2): 548–556

    Article  CAS  Google Scholar 

  37. Grausova L, Bacakova L, Kromka A, et al. Nanodiamond as promising material for bone tissue engineering. Journal of Nanoscience and Nanotechnology, 2009, 9(6): 3524–3534

    Article  CAS  Google Scholar 

  38. Yang L, Chinthapenta V, Li Q, et al. Understanding osteoblast responses to stiff nanotopographies through experiments and computational simulations. Journal of Biomedical Materials Research Part A, 2011, 97A(4): 375–382

    Article  CAS  Google Scholar 

  39. Rodrigues A A, Baranauskas V, Ceragioli H J, et al. In vivo preliminary evaluation of bone-microcrystalline and bonenanocrystalline diamond interfaces. Diamond and Related Materials, 2010, 19(10): 1300–1306

    Article  CAS  Google Scholar 

  40. Yang L, Li Y W, Sheldon B W, et al. Altering surface energy of nanocrystalline diamond to control osteoblast responses. Journal of Materials Chemistry, 2012, 22(1): 205–214

    Article  CAS  Google Scholar 

  41. Klauser F, Hermann M, Steinmuller-Nethl D, et al. Direct and protein-mediated cell attachment on differently terminated nanocrystalline diamond. Chemical Vapor Deposition, 2010, 16(1–3): 42–49

    Article  CAS  Google Scholar 

  42. Kromka A, Grausova L, Bacakova L, et al. Semiconducting to metallic-like boron doping of nanocrystalline diamond films and its effect on osteoblastic cells. Diamond and Related Materials, 2010, 19(2–3): 190–195

    Article  CAS  Google Scholar 

  43. Kloss F R, Gassner R, Preiner J, et al. The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation. Biomaterials, 2008, 29(16): 2433–2442

    Article  CAS  Google Scholar 

  44. Steinmüller-Nethl D, Kloss F R, Najam-Ul-Haq M, et al. Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials, 2006, 27(26): 4547–4556

    Article  Google Scholar 

  45. Jakubowski W, Bartosz G, Niedzielski P, et al. Nanocrystalline diamond surface is resistant to bacterial colonization. Diamond and Related Materials, 2004, 13(10): 1761–1763

    Article  CAS  Google Scholar 

  46. Tran P, Webster T J. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. International Journal of Nanomedicine, 2008, 3(3): 391–396

    CAS  Google Scholar 

  47. Tran P A, Sarin L, Hurt R H, et al. Opportunities for nanotechnology-enabled bioactive bone implants. Journal of Materials Chemistry, 2009, 19(18): 2653–2659

    Article  CAS  Google Scholar 

  48. Navarro-Alarcón M, López-Martínez M C. Essentiality of selenium in the human body: relationship with different diseases. Science of the Total Environment, 2000, 249(1–3): 347–371

    Google Scholar 

  49. Kopeikin V V, Valueva S V, Kipper A I, et al. Synthesis of selenium nanoparticles in aqueous solutions of poly(vinylpyrrolidone) and morphological characteristics of the related nanocomposites. Polymer Science Series A, 2003, 45(4): 374–379

    Google Scholar 

  50. Tran P A, Sarin L, Hurt R H, et al. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. Journal of Biomedical Materials Research Part A, 2010, 93(4): 1417–1428

    Google Scholar 

  51. Tran P A, Webster T J. Selenium nanoparticles inhibit Staphylococcus aureus growth. International Journal of Nanomedicine, 2011, 6: 1553–1558

    CAS  Google Scholar 

  52. Wang Q, Webster T J. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. Journal of Biomedical Materials Research Part A, 2012, 100A(12): 3205–3210

    Article  CAS  Google Scholar 

  53. Holinka J, Pilz M, Kubista B, et al. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. The Bone & Joint Journal, 2013, 95-B(5): 678–682

    Article  CAS  Google Scholar 

  54. Sirivisoot S, Yao C, Xiao X, et al. Developing biosensors for monitoring orthopedic tissue growth. In: Firestone M, Schmidt J, Malmstadt N, eds. MRS Proceedings Volume 950, Symposium D: Biosurfaces and Biointerfaces. Materials Research Society, 2007

    Google Scholar 

  55. Sirivisoot S, Webster T J. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology, 2008, 19(29): 295101

    Article  Google Scholar 

  56. Sirivisoot S, Webster T J. In situ bone growth detection using carbon nanotubes-titanium sensors. BioNanoScience, 2013, 3(2): 184–191

    Article  Google Scholar 

  57. Sirivisoot S, Yao C, Xiao X, et al. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology, 2007, 18(36): 365102

    Article  Google Scholar 

  58. Sirivisoot S, Pareta R, Webster T J. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology, 2011, 22(8): 085101

    Article  Google Scholar 

  59. Song J, Malathong V, Bertozzi C R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. Journal of the American Chemical Society, 2005, 127(10): 3366–3372

    Article  CAS  Google Scholar 

  60. Gkioni K, Leeuwenburgh S C G, Douglas T E L, et al. Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews, 2010, 16(6): 577–585

    Article  CAS  Google Scholar 

  61. Huang J, Wong C, George A, et al. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials, 2007, 28(14): 2358–2367

    Article  CAS  Google Scholar 

  62. Kim H J, Kim U J, Kim H S, et al. Bone tissue engineering with premineralized silk scaffolds. Bone, 2008, 42(6): 1226–1234

    Article  CAS  Google Scholar 

  63. Segman-Magidovich S, Grisaru H, Gitli T, et al. Matrices of acidic β-sheet peptides as templates for calcium phosphate mineralization. Advanced Materials, 2008, 20(11): 2156–2161

    Article  CAS  Google Scholar 

  64. Gungormus M, Branco M, Fong H, et al. Self assembled bifunctional peptide hydrogels with biomineralization-directing peptides. Biomaterials, 2010, 31(28): 7266–7274

    Article  CAS  Google Scholar 

  65. George A, Ravindran S. Protein templates in hard tissue engineering. Nano Today, 2010, 5(4): 254–266

    Article  CAS  Google Scholar 

  66. Wise E R, Maltsev S, Davies M E, et al. The organic-mineral interface in bone is predominantly polysaccharide. Chemistry of Materials, 2007, 19(21): 5055–5057

    Article  CAS  Google Scholar 

  67. Hu Y Y, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22425–22429

    Article  CAS  Google Scholar 

  68. Mahamid J, Addadi L, Weiner S. Crystallization pathways in bone. Cells, Tissues, Organs, 2011, 194(2–4): 92–97

    Article  CAS  Google Scholar 

  69. Weiner S, Addadi L. Crystallization pathways in biomineralization. Annual Review of Materials Research, 2011, 41: 21–40

    Article  CAS  Google Scholar 

  70. Termine J D, Posner A S. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science, 1966, 153(3743): 1523–1525

    Article  CAS  Google Scholar 

  71. Mahamid J, Sharir A, Addadi L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 12748–12753

    Article  CAS  Google Scholar 

  72. Beniash E, Metzler R A, Lam R S K, et al. Transient amorphous calcium phosphate in forming enamel. Journal of Structural Biology, 2009, 166(2): 133–143

    Article  CAS  Google Scholar 

  73. Mahamid J, Aichmayer B, Shimoni E, et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6316–6321

    Article  CAS  Google Scholar 

  74. Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 2007, 58(3–5): 77–116

    Article  Google Scholar 

  75. Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Materials, 2010, 9(12): 1004–1009

    Article  CAS  Google Scholar 

  76. Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience, 2004, 4(8): 743–765

    Article  CAS  Google Scholar 

  77. Jee S S, Kasinath R K, DiMasi E, et al. Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquidprecursor (PILP) process. CrystEngComm, 2011, 13(6): 2077–2083

    Article  CAS  Google Scholar 

  78. Liu Y, Kim Y K, Dai L, et al. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials, 2011, 32(5): 1291–1300

    Article  Google Scholar 

  79. Liu Y, Li N, Qi Y P, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Advanced Materials, 2011, 23(8): 975–980

    Article  CAS  Google Scholar 

  80. Maas M, Guo P, Keeney M, et al. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate. Nano Letters, 2011, 11(3): 1383–1388

    Article  CAS  Google Scholar 

  81. Wang Y, Azaïs T, Robin M, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nature Materials, 2012, 11(8): 724–733

    Article  CAS  Google Scholar 

  82. Palmer L C, Newcomb C J, Kaltz S R, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 2008, 108(11): 4754–4783

    Article  CAS  Google Scholar 

  83. Palmer L C, Stupp S I. Molecular self-assembly into onedimensional nanostructures. Accounts of Chemical Research, 2008, 41(12): 1674–1684

    Article  CAS  Google Scholar 

  84. Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684–1688

    Article  CAS  Google Scholar 

  85. Spoerke E D, Anthony S G, Stupp S I. Enzyme directed templating of artificial bone mineral. Advanced Materials, 2009, 21(4): 425–430

    Article  CAS  Google Scholar 

  86. Mata A, Geng Y B, Henrikson K J, et al. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials, 2010, 31(23): 6004–6012

    Article  CAS  Google Scholar 

  87. Boskey A L, Spevak L, Doty S B, et al. Effects of bone CSproteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcified Tissue International, 1997, 61(4): 298–305

    Article  CAS  Google Scholar 

  88. Boskey A L, Stiner D, Binderman I, et al. Effects of proteoglycan modification on mineral formation in a differentiating chick limbbud mesenchymal cell culture system. Journal of Cellular Biochemistry, 1997, 64(4): 632–643

    Article  CAS  Google Scholar 

  89. Rees S G, Wassell D T H, Shellis R P, et al. Effect of serum albumin on glycosaminoglycan inhibition of hydroxyapatite formation. Biomaterials, 2004, 25(6): 971–977

    Article  CAS  Google Scholar 

  90. Septier D, Hall R C, Lloyd D, et al. Quantitative immunohistochemical evidence of a functional gradient of chondroitin 4-sulphate/dermatan sulphate, developmentally regulated in the predentine of rat incisor. The Histochemical Journal, 1998, 30(4): 275–284

    Article  CAS  Google Scholar 

  91. Takagi M, Maeno M, Yamada T, et al. Nature and distribution of chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone. The Histochemical Journal, 1996, 28(5): 341–351

    Article  CAS  Google Scholar 

  92. Reid D G, Duer M J, Murray R C, et al. The organic-mineral interface in teeth is like that in bone and dominated by polysaccharides: Universal mediators of normal calcium phosphate biomineralization in vertebrates? Chemistry of Materials, 2008, 20(11): 3549–3550

    Article  CAS  Google Scholar 

  93. Duer M J, Friscić T, Proudfoot D, et al. Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28(11): 2030–2034

    Article  CAS  Google Scholar 

  94. Duer M J, Friscić T, Murray R C, et al. The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophysical Journal, 2009, 96(8): 3372–3378

    Article  CAS  Google Scholar 

  95. Zhong C, Chu C C. Biomimetic mineralization of acid polysaccharide-based hydrogels: towards porous 3-dimensional bone-like biocomposites. Journal of Materials Chemistry, 2012, 22(13): 6080–6087

    Article  CAS  Google Scholar 

  96. Zhong C, Wu J, Reinhart-King C A, et al. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. Acta Biomaterialia, 2010, 6(10): 3908–3918

    Article  CAS  Google Scholar 

  97. Li Q, Li M, Zhu P, et al. In vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template. Journal of Materials Chemistry, 2012, 22(38): 20257–20265

    Article  CAS  Google Scholar 

  98. Deng Y, Wang H, Zhang L, et al. In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatite in agar-gelatin co-hydrogel. Materials Letters, 2013, 104: 8–12

    Article  CAS  Google Scholar 

  99. Posner A S, Beebe R A. The surface chemistry of bone mineral and related calcium phosphates. Seminars in Arthritis and Rheumatism, 1975, 4(3): 267–291

    Article  CAS  Google Scholar 

  100. Xie B Q, Nancollas G H. How to control the size and morphology of apatite nanocrystals in bone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22369–22370

    Article  CAS  Google Scholar 

  101. Delgado-López JM, Iafisco M, Rodríguez I, et al. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomaterialia, 2012, 8(9): 3491–3499

    Article  Google Scholar 

  102. Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nature Reviews Genetics, 2012, 13(1): 21–35

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Yang or Chao Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Zhong, C. Advanced engineering and biomimetic materials for bone repair and regeneration. Front. Mater. Sci. 7, 313–334 (2013). https://doi.org/10.1007/s11706-013-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0226-4

Keywords

Navigation