Skip to main content
Log in

Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, a new mesoporous silicon sulfonic acid catalyst derived from silicic acid has been successfully prepared by the chemical bonding method. The physico-chemical properties of mesoporous silicon sulfonic acid catalysts have been systematically characterized using various techniques. The results demonstrate that sulfonic acid groups have been grafted on silicic acid by forming a new chemical bond (Si-O-S). The mesoporous silicon sulfonic acid exhibits excellent catalytic performance and stability in the vapor phase hydroamination reaction of cyclohexene with cyclohexylamine. Cyclohexene conversion of 61% and 97% selectivity to dicyclohexylamine was maintained after running the reaction for over 350 h at 280 °C. The developed mesoporous silicon sulfonic acid catalyst shows advantages of low cost, superior acid site accessibility, and long term reactivity stability. Moreover, a possible catalytic hydroamination reaction mechanism over silicon sulfonic acid was suggested. It has been demonstrated that the sulfonic acid groups of the catalyst play an important role in the hydroamination. The present work provides a simple, efficient, and environmentally friendly method for the hydroamination of cyclohexene to valuable dicyclohexylamine, which also shows important industrial application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talati J D, Patel G A. Amines as corrosion inhibitors for aluminium-manganese alloy in phosphoric acid. British Corrosion Journal, 1974, 9(3): 181–184

    CAS  Google Scholar 

  2. Monticelli C, Frignani A, Trabanelli G. Corrosion inhibition of steel in chloride-containing alkaline solutions. Journal of Applied Electrochemistry, 2002, 32(5): 527–535

    CAS  Google Scholar 

  3. Eisenhuth L, Zengel H G, Bergfeld M. Process for the preparation of thiuram disulfides. US Patent, 4 459 424 A, 1984-07-10

  4. Yutronic N, Manríquez V, Jara P, Wittke O, González G. Dicyclohexylamine-thiourea clathrate. Supramolecular Chemistry, 2001, 12(4): 397–403

    CAS  Google Scholar 

  5. Carswell T S, Morrill H L. Cyclohexylamine and dicyclohexylamine. Industrial & Engineering Chemistry, 1937, 29(11): 1247–1251

    CAS  Google Scholar 

  6. Darsow G, Langer R. Method for producing variable mixtures of cyclohexylamine and dicyclohexylamine. US Patent, 6 335 470 B1, 2002-01-01

  7. Immel O, Darsow G, Waldmann H, Petruck G M. Process for the preparation of a mixture of cyclohexylamine and dicyclohexylamine using a supported noble metal catalyst. US Patent, 5 322 965 A, 1994-06-21

  8. Rubio-Marqués P, Leyva-Pérez A, Corma A. A bifunctional palladium/acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes. Chemical Communications, 2013, 49(74): 8160–8162

    PubMed  Google Scholar 

  9. Pies M, Helmut F. Process for the preparation of dicyclohexylamine. EP Patent, 0 513 640 A1, 1992-11-19

  10. Van M F H. Process for making dicyclohexylamine. GB Patent, 1 235 443 A, 1971-06-16

  11. Robinson R M, Braaten W C. Dicyclohexylamine process. US Patent, 3 154 580 A, 1964-10-27

  12. Beller M, Trauthwein H, Eichberger M, Breindl C, Herwig J, Müller T, Thiel O. The first rhodium-catalyzed anti-markovnikov hydroamination: studies on hydroamination and oxidative amination of aromatic olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 1999, 5(4): 1306–1319

    CAS  Google Scholar 

  13. McBee J L, Bell A T, Tilley T D. Mechanistic studies of the hydroamination of norbornene with electrophilic platinum complexes: the role of proton transfer. Journal of the American Chemical Society, 2008, 130(49): 16562–16571

    CAS  PubMed  Google Scholar 

  14. Rodriguez-Zubiri M, Anguille S, Brunet J J, Daran J C. Pt-catalysed intermolecular hydroamination of non-activated olefins using a novel family of catalysts: arbuzov-type phosphorus metal complexes. Journal of Molecular Catalysis A Chemical, 2013, 379: 103–111

    CAS  Google Scholar 

  15. Taylor J G, Whittall N, Hii K K. Copper-catalyzed intermolecular hydroamination of alkenes. Organic Letters, 2006, 8(16): 3561–3564

    CAS  PubMed  Google Scholar 

  16. Ichikawa S, Zhu S, Buchwald S L. A modified system for the synthesis of enantioenriched N-arylamines through copper-catalyzed hydroamination. Angewandte Chemie International Edition, 2018, 57(28): 8714–8718

    CAS  PubMed  Google Scholar 

  17. Hong S, Marks T J. Organolanthanide-catalyzed hydroamination. Accounts of Chemical Research, 2004, 37(9): 673–686

    CAS  PubMed  Google Scholar 

  18. Schlott R J, Falk J C, Narducy K W. Lithium amide catalyzed amine-olefin addition reactions. Journal of Organic Chemistry, 1972, 37(26): 4243–4245

    CAS  Google Scholar 

  19. Khedkar V, Tillack A, Benisch C, Melder J P, Beller M. Base-catalyzed hydroamination of ethylene with diethylamine. Journal of Molecular Catalysis A Chemical, 2005, 241(1–2): 175–183

    CAS  Google Scholar 

  20. Eller K, Muller U, Kummer R, Stops P. Preparation of amines from olefins over zeolites of the type PSH-3, MCM-22, SSZ-25 or mixtures thereof. US Patent, 5 900 508 A, 1999-05-04

  21. Eller K, Kummer R. Preparation of amines from olefins on zeolites of the MCM-49 or MCM-56 type. US Patent, 5 840 988 A, 1998-11-24

  22. Deeba M. Amination of olefins using organic acid catalysts. US Patent, 4 536 602 A, 1985-08-20

  23. Schlummer B, Hartwig J F. Bronsted acid-catalyzed intramolecular hydroamination of protected alkenylamines. Synthesis of pyrrolidines and piperidines. Organic Letters, 2002, 4(9): 1471–1474

    CAS  PubMed  Google Scholar 

  24. Rosenfeld D C, Shashank S, Takemiya A, Masaru U, Hartwig J F. Hydroamination and hydroalkoxylation catalyzed by triflic acid. Parallels to reactions initiated with metal triflates. Organic Letters, 2006, 8(19): 4179–4182

    CAS  PubMed  Google Scholar 

  25. Yang L, Xu L W, Xia C G. Heteropoly acids: a green and efficient heterogeneous Brønsted acidic catalyst for the intermolecular hydroamination of olefins. Tetrahedron Letters, 2008, 49(18): 2882–2885

    CAS  Google Scholar 

  26. Cheng X, Xia Y, Wei H, Xu B, Zhang C, Li Y, Qian G, Zhang X, Li K, Li W. Lewis acid catalyzed intermolecular olefin hydroamination: scope, limitation, and mechanism. European Journal of Organic Chemistry, 2008, 2008(11): 1929–1936

    Google Scholar 

  27. Ng E P, Law S P, Mukti R R, Juan J C, Adam F. Hydroamination of cyclohexene enhanced by ZnCl2 nanoparticles supported on chiral mesoporous silica. Chemical Engineering Journal, 2014, 243: 99–107

    CAS  Google Scholar 

  28. Ng E P, Law S P, Mukti R R, Adam F. Metal chlorides supported on chiral mesoporous silica (MClx/CMS) as highly active Lewis acid catalyst for the selective hydroamination of cyclohexene. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1435–1442

    CAS  Google Scholar 

  29. Salehi P, Ali Zolfigol M, Shirini F, Baghbanzadeh M. Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Current Organic Chemistry, 2006, 10(17): 2171–2189

    CAS  Google Scholar 

  30. Salehi P, Dabiri M, Ali Zolfigol M, Fard M A B. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Letters, 2003, 44(14): 2889–2891

    CAS  Google Scholar 

  31. Ali Zolfigol M, Mirjalili B F, Bamoniri A, Zarchi M A K, Zarei A, Khazdooz L, Noei J. Nitration of aromatic compounds on silica sulfuric acid. Bulletin of the Korean Chemical Society, 2004, 25(9): 1414–1416

    Google Scholar 

  32. Shaabani A, Soleimani K, Bazgir A. Silica sulfuric acid catalysis the oxidation of organic compounds with sodium bromate. Synthetic Communications, 2004, 34(18): 3303–3315

    CAS  Google Scholar 

  33. Shaabani A, Rezayan A H. Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catalysis Communications, 2007, 8(7): 1112–1116

    CAS  Google Scholar 

  34. Shirini F, Ali Zolfigol M, Mohammadi K. Acetylation and formylation of alcohols in the presence of silica sulfuric acid. Phosphorus, Sulfur, and Silicon and the Related Elements, 2003, 178(7): 1617–1621

    CAS  Google Scholar 

  35. Tai Z, Isaacs M A, Parlett C M A, Lee A F, Wilson K. High activity magnetic core-mesoporous shell sulfonicacid silica nanoparticles for carboxylic acid esterification. Catalysis Communications, 2017, 92: 56–60

    CAS  Google Scholar 

  36. Ali Zolfigol M. Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 2001, 57(46): 9509–9511

    Google Scholar 

  37. Modarresi-Alam A R, Nasrollahzadeh M, Khamooshi F. Solventfree preparation of primary carbamates using silica sulfuric acid as an efficient reagent. Archive for Organic Chemistry, 2007, 16: 238–245

    Google Scholar 

  38. Hu Y L, Fang D, Li D S. Novel and efficient heterogeneous 4-methylbenzenesulfonic acid-based ionic liquid supported on silica gel for greener Fischer indole synthesis. Catalysis Letters, 2016, 146(5): 968–976

    CAS  Google Scholar 

  39. Liu S, You K, Jian J, Zhao F, Zhong W, Yin D, Liu P, Ai Q, Luo H A. Mesoporous silica gel as an effective and eco-friendly catalyst for highly selective preparation of cyclohexanone oxime by vapor phase oxidation of cyclohexylamine with air. Journal of Catalysis, 2016, 338: 239–249

    CAS  Google Scholar 

  40. Fujiki J, Yogo K, Furuya E. Role of silanol groups on silica gel on adsorption of benzothiophene and naphthalene. Fuel, 2018, 215: 463–467

    CAS  Google Scholar 

  41. Zeynizadeh B, Rahmani S, Eghbali E. Anchored sulfonic acid on silica-layered NiFe2O4: a magnetically reusable nanocatalyst for Hantzsch synthesis of 1,4-dihydropyridines. Polyhedron, 2019, 168: 57–66

    CAS  Google Scholar 

  42. Munavalli B B, Kariduraganavar M Y. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application. Electrochimica Acta, 2019, 296: 294–307

    CAS  Google Scholar 

  43. Zhang P, Wu H, Fan M, Sun W, Jiang P, Dong Y. Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production. Fuel, 2019, 235: 426–432

    CAS  Google Scholar 

  44. Zhang Y, Wang H, Sun N, Chi R. Experimental and computational study on mechanism of dichromate adsorption by ionic liquid-bonded silica gel. Separation and Purification Technology, 2018, 205: 84–93

    CAS  Google Scholar 

  45. Casu M, Lai A, Musinu A, Piccaluga G, Solinas S, Bruni S, Cariati F, Beretta E. XRD, TEM, IR and 29Si MAS NMR characterization of NiO-SiO2 nanocomposites. Journal of Materials Science, 2001, 36(15): 3731–3735

    CAS  Google Scholar 

  46. Battisha I K, El Beyally A, El Mongy S A, Nahrawi A M. Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol-gel route. Journal of Sol-Gel Science and Technology, 2007, 41(2): 129–137

    CAS  Google Scholar 

  47. Caetano C, Caiado M, Farinha J, Fonseca I, Ramos A, Vital J, Castanheiro J. Esterification of free fatty acids over chitosan with sulfonic acid groups. Chemical Engineering Journal, 2013, 230: 567–572

    CAS  Google Scholar 

  48. Martínez J J, Nope E, Rojas H, Brijaldo M H, Passos F, Romanelli G. Reductive amination of furfural over Me/SiO2-SO3H (Me: Pt, Ir, Au) catalysts. Journal of Molecular Catalysis A Chemical, 2014, 392: 235–240

    Google Scholar 

  49. Jian J, You K, Luo Q, Gao H, Zhao F, Liu P, Ai Q, Luo H A. Supported Ni-Al-VPO/MCM-41 as efficient and stable catalysts for highly selective preparation of adipic acid from cyclohexane with NO2. Industrial & Engineering Chemistry Research, 2016, 55(13): 3729–3735

    CAS  Google Scholar 

  50. Al Dughaither A S, de Lasa H. HZSM-5 zeolites with different SiO2/Al2O3 ratios. Characterization and NH3 desorption kinetics. Industrial & Engineering Chemistry Research, 2014, 53(40): 15303–15316

    CAS  Google Scholar 

  51. Wen J, You K, Liu X, Jian J, Zhao F, Liu P, Ai Q, Luo H A. Highly selective one-step catalytic amination of cyclohexene to cyclohexylamine over HZSM-5. Catalysis Communications, 2019, 127: 64–68

    CAS  Google Scholar 

  52. You K, Deng R, Jian J, Liu P, Ai Q, Luo H A H. 3PW12O40 synergized with MCM-41 for the catalytic nitration of benzene with NO2 to nitrobenzene. RSC Advances, 2015, 5(89): 73083–73090

    CAS  Google Scholar 

  53. Zhao X S, Lu M G Q, Song C. Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene. Journal of Molecular Catalysis A Chemical, 2003, 191(1): 67–74

    CAS  Google Scholar 

  54. Tyagi B, Mishra M K, Jasra R V. Solvent free synthesis of 7-isopropyl-1,1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst. Journal of Molecular Catalysis A Chemical, 2009, 301(1–2): 67–78

    CAS  Google Scholar 

  55. Zhou F, Tang J, Fei Z, Zhou X, Chen X, Cui M, Qiao X. Efficient cyclohexyl acrylate production by direct addition of acrylic acid and cyclohexene over SBA-15-SO3H. Journal of Porous Materials, 2014, 21(2): 149–155

    CAS  Google Scholar 

  56. Zhou S, You K, Gao H, Deng R, Zhao F, Liu P, Ai Q, Luo H A. Mesoporous silica-immobilized FeCl3 as a highly efficient and recyclable catalyst for the nitration of benzene with NO2 to nitrobenzene. Molecular Catalysis, 2017, 433: 91–99

    CAS  Google Scholar 

  57. Jiang T, Cheng J, Liu W, Fu L, Zhou X, Zhao Q, Yin H. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol. Journal of Solid State Chemistry, 2014, 218: 71–80

    CAS  Google Scholar 

  58. Li B, Chen D, Zhang X, Dong W, Zhao B. A convenient method to immobilize 4-dimethylaminopyridine on silica gel as a heterogeneous nucleophilic catalyst for acylation. Chemical Papers, 2018, 72(6): 1339–1345

    CAS  Google Scholar 

  59. Deng R, You K, Yi L, Zhao F, Jian J, Chen Z, Liu P, Ai Q, Luo H A. Solvent-free, low-temperature, highly efficient catalytic nitration of toluene with NO2 promoted by molecular oxygen over immobilized AlCl3-SiO2. Industrial & Engineering Chemistry Research, 2018, 57(39): 12993–13000

    CAS  Google Scholar 

  60. Zhao X S, Lu G Q, Whittaker A K, Millar G J, Zhu H Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. Journal of Physical Chemistry B, 1997, 101(33): 6525–6531

    CAS  Google Scholar 

  61. Brinker C J, Tallant D R, Roth E P, Ashley C S. Sol-gel transition in simple silicates: III. Structural studies during densification. Journal of Non-Crystalline Solids, 1986, 82(1–3): 117–126

    CAS  Google Scholar 

  62. Ke C C, Li X, Shen Q, Qu S G, Shao Z G, Yi B L. Investigation on sulfuric acid sulfonation of in-situ sol-gel derived Nafion/SiO2 composite membrane. International Journal of Hydrogen Energy, 2011, 36(5): 3606–3613

    CAS  Google Scholar 

  63. Long J, Wang P, Wang W, Li Y, Yin G. Nickel/brønsted acid-catalyzed chemo-and enantioselective intermolecular hydroamination of conjugated dienes. iScience, 2019, 22: 369–379

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jimenez O, Müller T E, Schwieger W, Lercher J A. Hydroamination of 1,3-cyclohexadiene with aryl amines catalyzed with acidic form zeolites. Journal of Catalysis, 2006, 239(1): 42–50

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support by the National Natural Science Foundation of China (Grant No. 21676226), the Natural Science Foundation for Distinguished Young Scholars in Hunan Province (Grant No. 2018JJ1023), Key Research and Development Program in Hunan Province (Grant No. 2019GK2041) and Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuiyi You or He’an Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., You, K., Chen, M. et al. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase. Front. Chem. Sci. Eng. 15, 654–665 (2021). https://doi.org/10.1007/s11705-020-1973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1973-2

Keywords

Navigation