Skip to main content
Log in

A double sulfonated mesoporous polydivinylbenzene as a solid acid to catalyze the condensation of phenol and cyclohexanone

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Sulfonated mesoporous polydivinylbenzene was prepared by different sulfonation methods and then as a solid acid to catalyze the condensation of phenol and cyclohexanone. The physicochemical properties of the solid acid were characterized by BET, FT-IR, SEM, TG, XRD and acid–base titration; then, the structure–activity relationship of the solid acid was studied. It was found that the catalyst had a sponge like microstructure with the specific surface area of 395 m2/g and average pore diameter of 14.1 nm. The acid–base titration result showed that the acid density of mesoporous polydivinylbenzene solid acid prepared by double sulfonation (D-SPDVB) was the highest, reaching 4.62 mmol H+/g. The catalytic result showed that D-SPDVB had better catalytic performance than Amberlyst-15, sulfuric acid and other traditional Brønsted acids due to its high acid density and suitable pore structure. More importantly, D-SPDVB had good stability, and its catalytic performance did not decrease significantly after reused 5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. B.G. Manwar, S.H. Kavthia, P.H. Parsania, Eur. Polym. J. 40, 315 (2004)

    Article  CAS  Google Scholar 

  2. K. Yoshizawa, S. Toyota, F. Toda, M. Kato, I. Csöregh, CrystEngComm 9, 786 (2007)

    Article  CAS  Google Scholar 

  3. Q. Zeng, D. Wu, C. Liu, H. Ma, J. Lu, S. Xu, Y. Li, C. Wang, C. Bai, Crys. Growth Des. 5, 1041 (2005)

    Article  CAS  Google Scholar 

  4. C.P. Yang, R.S. Chen, C.W. Yu, J. Appl. Polym. Sci. 82, 2750 (2001)

    Article  CAS  Google Scholar 

  5. M.R. Caira, A. Horne, L.R. Nassimbeni, K. Okuda, F. Toda, J. Chem. Soc. Perkin Trans. 2(6), 1063 (1995)

    Article  Google Scholar 

  6. P.H. Parsania, P.P. Shah, K.C. Patel, R.D. Patel, J. Macromol. Sci. A 22, 1495 (1985)

    Article  Google Scholar 

  7. J.A. Desai, U. Dayal, P.H. Parsania, J. Macromol. Sci. A 33, 1113 (1996)

    Article  Google Scholar 

  8. Y.V. Patel, P.H. Parsania, Polym. Test. 21, 711 (2002)

    Article  CAS  Google Scholar 

  9. B. Sarma, S. Roy, A. Nangia, Chem. Commun. 47, 4918 (2006)

    Article  Google Scholar 

  10. L. Joshi, P.H. Parsania, Des. Monomers Polym. 16, 185 (2013)

    Article  CAS  Google Scholar 

  11. F.D. Karia, P.H. Parsania, Eur. Polym. J. 35, 121 (1999)

    Article  CAS  Google Scholar 

  12. Y.S. Kim, J. Yang, S. Wang, A.K. Banthia, J.E. McGrath, Polymer 43, 7207 (2002)

    Article  CAS  Google Scholar 

  13. Y. Zhang, G.M. Yan, G. Zhang, S.L. Liu, J. Yang, Polymer 186, 122047 (2020)

    Article  CAS  Google Scholar 

  14. G. Latha, N. M, K. Balaji, M. Sevi, High Perform. Polym. 26, 125 (2013)

    Article  Google Scholar 

  15. G. Rizwan, H. Modi, A. Prajapati, C. Patel, P.H. Parsania, Russ. J. Phys. Chem. A 95, 21 (2021)

    Article  Google Scholar 

  16. R.W. Gregor, J. Chem. Educ. 89, 669 (2012)

    Article  CAS  Google Scholar 

  17. L.S. Patil, V.S. Suryawanshi, O.B. Pawar, N.D. Shinde, E. J. Chem. 8, 372673 (2011)

    Google Scholar 

  18. C.K. Chozhan, M. Alagar, P. Gnanasundaram, Acta Mater. 57, 782 (2009)

    Article  CAS  Google Scholar 

  19. G. Latha, S.C. Murugavel, Polym. Bull. 73, 3237 (2016)

    Article  CAS  Google Scholar 

  20. H. Hattori, Top. Catal. 53, 432 (2010)

    Article  CAS  Google Scholar 

  21. N.M. Bertero, A.F. Trasarti, M.C. Acevedo, A.J. Marchi, C.R. Apesteguía, Mol. Catal. 481, 110192 (2020)

    Article  CAS  Google Scholar 

  22. J.E. Bruno, K.M. Dooley, Appl. Catal. A 497, 176 (2015)

    Article  CAS  Google Scholar 

  23. M.M. Garnica, A.E. Torres, G.E. Ramírez-Caballero, P.B. Balbuena, Microporous Mesoporous Mater. 265, 241 (2018)

    Article  CAS  Google Scholar 

  24. Y. Román-Leshkov, M. Moliner, J.A. Labinger, M.E. Davis, Angew. Chem Int. Ed. 49, 8954 (2010)

    Article  Google Scholar 

  25. S. Singhal, S. Agarwal, S. Arora, N. Singhal, A. Kumar, Catal. Sci. Technol. 7, 5810 (2017)

    CAS  Google Scholar 

  26. X. Liang, Chem. Eng. J. 264, 251 (2015)

    Article  CAS  Google Scholar 

  27. Y. Liu, E. Baráth, H. Shi, J. Hu, D.M. Camaioni, J.A. Lercher, Nat. Catal. 1, 141 (2018)

    Article  CAS  Google Scholar 

  28. K. Jacobson, R. Gopinath, L.C. Meher, A.K. Dalai, Appl. Catal. B 85, 86 (2008)

    Article  CAS  Google Scholar 

  29. P. Kasinathan, C. Lang, S. Radhakrishnan, J. Schnee, C. D’Haese, E. Breynaert, J.A. Martens, E.M. Gaigneaux, A.M. Jonas, A.E. Fernandes, Chem. Eur. J. 25, 6753 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. F. Su, Y. Guo, Green Chem. 16, 2934 (2014)

    Article  CAS  Google Scholar 

  31. Y.L. Zhang, S. Wei, F.J. Liu, Y.C. Du, S. Liu, Y.Y. Ji, T. Yokoi, T. Tatsumi, F.S. Xiao, Nano Today 4, 135 (2009)

    Article  CAS  Google Scholar 

  32. R.L. Mou, X.J. Wang, Z.Q. Wang, D.Y. Zhang, Z.L. Yin, Y. Lv, Z. Wei, Fuel 302, 121175 (2021)

    Article  CAS  Google Scholar 

  33. D.P. Yuan, N. Zhao, Y.X. Wang, K. Xuan, F. Li, Y.F. Pu, F. Wang, L. Li, F.K. Xiao, Appl. Catal. B 240, 182 (2019)

    Article  CAS  Google Scholar 

  34. F. Mohajer, G.M. Ziarani, A. Badiei, L.G. Voskressensky, R. Luque, Res. Chem. Intermed. 48, 3739 (2022)

    Article  CAS  Google Scholar 

  35. Z.M. Sun, X.Y. Yang, X.P. Huang, M.M. Zhang, G.M. Bian, Y.L. Qi, X.L. Yang, W.Q. Zhang, New J. Chem. 43, 16676 (2019)

    Article  CAS  Google Scholar 

  36. M. Halder, P. Bhanja, M.M. Islam, S. Chatterjee, A. Khan, A. Bhaumik, S.M. Islam, Mol. Catal. 494, 111119 (2020)

    Article  CAS  Google Scholar 

  37. X. Wang, Q. Deng, Y. Zhang et al., Res. Chem. Intermed. 49, 1369 (2023)

    Article  CAS  Google Scholar 

  38. D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  39. F.H. Richter, L. Sahraoui, F. Schuth, Chem. Eur. J. 22, 13563 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. D. Das, J.F. Lee, S.F. Cheng, J. Catal. 223, 152 (2004)

    Article  CAS  Google Scholar 

  41. K. Nowinska, W. Kaleta, Appl. Catal. A 203, 91 (2000)

    Article  CAS  Google Scholar 

  42. L.J. Hou, Q.H. Cai, B. Lu, X.M. Li, X. Xiao, Y.Y. Han, S.H. Cui, Catal. Lett. 111, 153 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Startup Foundation for Doctors of Yan'an University (YAU202303842 and YAU202213104) and National Natural Science Foundation of China (Nos. 22168040 and 22162025) and the Project of Science and Technology Office of Shaanxi Province (No. 2022JM-062).

Author information

Authors and Affiliations

Authors

Contributions

NW was involved in investigation, material preparation, data collection and analysis, writing the original draft and funding acquisition. LG and DW took part in review and funding acquisition. TC and GW participated in data analysis, methodology and review. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ning Wei or Tong Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Guo, L., Wang, D. et al. A double sulfonated mesoporous polydivinylbenzene as a solid acid to catalyze the condensation of phenol and cyclohexanone. Res Chem Intermed 50, 839–852 (2024). https://doi.org/10.1007/s11164-023-05175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05175-4

Keywords

Navigation