Skip to main content
Log in

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A low-cost and high-activity catalyst for oxygen evolution reaction (OER) is the key to the water splitting technology for hydrogen generation. Here we report the use of three solvents, DMF, ethanol and glycol, in the solvothermal synthesis of three nano-catalysts, Co3(VO4)2-I, Co3(VO4)2-II, and Co3(VO4)2-III, respectively. Transmission electron microscope shows Co3(VO4)2-I, II, and III exist as ultrafine nanosheets, ultrathin nanofilms, and ultrafine nanosheet-comprised microspheres, respectively. These Co3(VO4)2 catalysts exhibit OER electrocatalysis, among which the Co3(VO4)2-II shows the lowest onset overpotential of 310 mVand only requires a small overpotential of 330 mV to drive current density of 10 mA/cm2. Due to their high surface free energy, the ultrathin nanofilms of Co3(VO4)2-II exhibits a good immobilization effect with the high electrocatalytic activity for OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrera G, Jiménez-Mier J, Wilks R G, Moewes A, Yang W, Denlinger J. Fast electron dynamics in vanadates measured by resonant inelastic x-ray scattering. Materials Letters, 2013, 107: 144–146

    Article  CAS  Google Scholar 

  2. Liang Y, Liu P, Li H B, Yang G W. Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm, 2012, 14(9): 3291–3296

    Article  CAS  Google Scholar 

  3. Zhang S, Hou M, Hou L, Lu M. Synthesis and electrochemical performance of cable-like copper vanadates/polypyrrole nanobelts as anode materials for lithium-ion batteries. Chemical Physics Letters, 2016, 658: 203–206

    Article  CAS  Google Scholar 

  4. Wang N, He Z, Cui M, Guo W, Zhang S, Yang M, Tang Y. Syntheses, structure and magnetic properties of two vanadate garnets Ca5M4V6O24 (M = Co, Ni). Journal of Solid State Chemistry, 2015, 228: 245–249

    Article  CAS  Google Scholar 

  5. Liu Y, Dai H, Deng J, Zhang L, Au C T. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale, 2012, 4(7): 2317–2325

    Article  CAS  PubMed  Google Scholar 

  6. Abdi F F, Han L, Smets A H M, Zeman M, Dam B, Van De Krol R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nature Communications, 2013, 4: 2195

    Article  CAS  PubMed  Google Scholar 

  7. Shi X, Choi I Y, Zhang K, Kwon J, Kim D Y, Lee J K, Oh S H, Kim J K, Park J H. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5: 4775

    Article  CAS  PubMed  Google Scholar 

  8. Vu T A, Dao C D, Hoang T T T, Dang P T, Tran H T K, Nguyen K T, Le G H, Nguyen T V, Lee G D. Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities. Materials Letters, 2014, 123: 176–180

    Article  CAS  Google Scholar 

  9. Yin K, Liu S, Cai Q, Gao A, Lu S, Shao M. The enhanced ammonia gas-sensing activity of gamma ray irradiated indium vanadate nanoribbons. Journal of Materials Science Materials in Electronics, 2014, 25(1): 419–422

    Article  CAS  Google Scholar 

  10. Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P. A comparative insight of potassium vanadates as positive electrode materials for Li batteries: Influence of the longrange and local structure. Inorganic Chemistry, 2014, 53(3): 1764–1772

    Article  CAS  PubMed  Google Scholar 

  11. Nithya V D, Pandi K, Lee Y S, Selvan R K. Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochimica Acta, 2015, 167: 97–104

    Article  CAS  Google Scholar 

  12. Zhou B, Zhao X, Liu H, Qu J, Huang C P. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99(1-2): 214–221

    Article  CAS  Google Scholar 

  13. Xiao M, Miao Y, Li W, Yang Y, Liang X. Onsite deposition of selfrepairing biomimetic nanostructured Ni catalysts with improved electrocatalysis toward glycerol oxidation for H2 production. Electrochimica Acta, 2015, 178: 209–216

    Article  CAS  Google Scholar 

  14. Xiao M, Miao Y, Tian Y, Yan Y. Synthesizing nanoparticles of Co-P-Se compounds as electrocatalysts for the hydrogen evolution reaction. Electrochimica Acta, 2015, 165: 206–210

    Article  CAS  Google Scholar 

  15. Xiao M, Zhang Z, Tian Y, Miao Y, Wang J. Co-Fe-Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. Journal of Applied Electrochemistry, 2017, 47 (3): 361–367

    Article  CAS  Google Scholar 

  16. Tian Y, Zhang Z, Miao Y. Co-Te-Se nano-compounds as electrocatalysts for hydrogen evolution reaction. Journal of the Electrochemical Society, 2016, 163(8): H625–H629

    Article  CAS  Google Scholar 

  17. Xiao M, Liang X, Li W, Yang Y, Miao Y. Synthesis of ultrafine Pt/ Pd bimetallic nanoparticles and their decoration on MWCNTs for hydrogen evolution. Journal of the Electrochemical Society, 2015, 162(6): H415–H418

    Article  CAS  Google Scholar 

  18. Liang Y, Liu Q, Luo Y, Sun X, He Y, Asiri A M. Zn0.76Co0.24S/ CoS2 nanowires array for efficient electrochemical splitting of water. Electrochimica Acta, 2016, 190: 360–364

    Article  CAS  Google Scholar 

  19. Liu T, Liu Q, Asiri A M, Luo Y, Sun X. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chemical Communications, 2015, 51(93): 16683–16686

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, Liang Y, Liu Q, Sun X, He Y, Asiri A M. Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 2015, 60: 92–96

    Article  CAS  Google Scholar 

  21. Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698

    Article  CAS  PubMed  Google Scholar 

  22. Feng J X, Ye S H, Xu H, Tong Y X, Li G R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703

    Article  CAS  PubMed  Google Scholar 

  23. Le C. A review of non-fossil energy based hydrogen production technologies. Energy Research and Information, 2011, 3: 130–137

    Google Scholar 

  24. Zhou M, Ouyang R, Li Y, Miao Y. 3D microspheres organized from Ni-Mo-S nanoparticles in situ synthesized on porous Ti for hydrogen evolution electrocatalysis. Electrochimica Acta, 2017, 246: 9–16

    Article  CAS  Google Scholar 

  25. Yin Y, Tan X, Hou F, Zhao L. Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting. Frontiers of Chemical Engineering in China, 2009, 3 (3): 298–304

    Article  CAS  Google Scholar 

  26. Gomathisankar P, Noda T, Katsumata H, Suzuki T, Kaneco S. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Frontiers of Chemical Science and Engineering, 2014, 8(2): 197–202

    Article  CAS  Google Scholar 

  27. Lu X F, Gu L F, Wang J W, Wu J X, Liao P Q, Li G R. Bimetalorganic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Advanced Materials, 2017, 29(3): 1604437

    Article  CAS  Google Scholar 

  28. Fei G, Zhao J. Applications and key materials of the vanadium redox flow battery. Energy Research and Information, 2008, 24(1): 49–55

    CAS  Google Scholar 

  29. Xing M, Kong L B, Liu M C, Liu L Y, Kang L, Luo Y C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(43): 18435–18443

    Article  CAS  Google Scholar 

  30. Cardenas-Morcoso D, Peiro-Franch A, Herraiz-Cardona I, Gimenez S. Chromium doped copper vanadate photoanodes for water splitting. Catalysis Today, 2017, 290: 65–72

    Article  CAS  Google Scholar 

  31. Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174): 990–994

    Article  CAS  PubMed  Google Scholar 

  32. Tian Y, Zhou M, Meng X, Miao Y, Zhang D. Needle-like CoMoO with multi-modal porosity for pseudocapacitors. Materials Chemistry and Physics, 2017, 198: 258–265

    Article  CAS  Google Scholar 

  33. Yan Y, Tian Y, Hao M, Miao Y. Synthesis and characterization of cross-like Ni-Co-P microcomposites. Materials & Design, 2016, 111: 230–238

    Article  CAS  Google Scholar 

  34. Mazloom F, Masjedi-Arani M, Salavati-Niasari M. Controllable synthesis, characterization and photocatalytic studies on cadmium vanadate nanostructures. Journal of Molecular Liquids, 2016, 220: 566–572

    Article  CAS  Google Scholar 

  35. Zhou D, Zhu Z, Liu B. Solvothermal synthesis and characterization of a novel reduced graphene oxide (RGO)/BiVO4/SiO2 nanocomposites. Materials Letters, 2016, 185: 32–35

    Article  CAS  Google Scholar 

  36. Han G H, Yang S Z, Huang Y F, Yang J, Chai W C, Zhang R, Chen D L. Hydrothermal synthesis and electrochemical sensing properties of copper vanadate nanocrystals with controlled morphologies. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1105–1116

    Article  CAS  Google Scholar 

  37. Pei L Z, Xie Y K, Pei Y Q, Jiang Y X, Yu H Y, Cai Z Y. Hydrothermal synthesis of Mn vanadate nanosheets and visiblelight photocatalytic performance for the degradation of methyl blue. Materials Research Bulletin, 2013, 48(7): 2557–2565

    Article  CAS  Google Scholar 

  38. Kumar J V, Karthik R, Chen S M, Marikkani S, Elangovan A, Muthuraj V. Green synthesis of a novel flower-like cerium vanadate microstructure for electrochemical detection of tryptophan in food and biological samples. Journal of Colloid and Interface Science, 2017, 496: 78–86

    Article  CAS  PubMed  Google Scholar 

  39. Yu Y, Huang S Y, Li Y, Steinmann S N, Yang W, Cao L. Layerdependent electrocatalysis of MoS2 for hydrogen evolution. Nano Letters, 2013, 14(2): 553–558

    Article  CAS  Google Scholar 

  40. Bao J, Zhu X, Liu Y, Li W, Yu R. N,N-dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures. Materials Letters, 2014, 124: 97–100

    Article  CAS  Google Scholar 

  41. Zahir M H, Mohamed S A, Rahman M M, Rehman A U. Hydrothermal synthesis of triangular CeCO3OH particles and photoluminescence properties. Chinese Chemical Letters, 2017, 28(3): 663–669

    Article  CAS  Google Scholar 

  42. Xing M, Kong L B, Liu M C, Liu L Y, Kang L, Luo Y C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(43): 18435–18443

    Article  CAS  Google Scholar 

  43. Esch T R, Bredow T. Bulk and surface properties of magnesium peroxide MgO2. Applied Surface Science, 2016, 389: 1202–1207

    Article  CAS  Google Scholar 

  44. Jiang J, Zhang A, Li L, Ai L. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015, 278: 445–451

    Article  CAS  Google Scholar 

  45. Cheng N, Xue Y, Liu Q, Tian J, Zhang L, Asiri A M, Sun X. Cu/(Cu (OH)2-CuO) core/shell nanorods array: In-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 2015, 163: 102–106

    Article  CAS  Google Scholar 

  46. Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors & Bioelectronics, 2014, 53(Supplement C): 428–439

    Article  CAS  Google Scholar 

  47. Yang Z, Miao Y,Wang T, Liang X, Xiao M, Li W, Yang Y. The selfadsorption of Ni ultrathin layer on glassy carbon surface and their electrocatalysis toward glucose. Journal of the Electrochemical Society, 2014, 161(6): H375–H378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the support from the National Natural Science Foundation of China (Grant No. 21305090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Xiao, M., Qian, L. et al. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution. Front. Chem. Sci. Eng. 12, 409–416 (2018). https://doi.org/10.1007/s11705-017-1689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1689-0

Keywords

Navigation