Skip to main content
Log in

Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 μm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma M Y, Zhu Y J, Li L, Cao S W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. Journal of Materials Chemistry, 2008, 18(23): 2722–2727

    Article  CAS  Google Scholar 

  2. Uskoković V, Uskoković D P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 96(1): 152–191

    Article  Google Scholar 

  3. Zhang H G, Zhu Q S, Wang Y. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine. Chemistry of Materials, 2005, 17(23): 5824–5830

    Article  CAS  Google Scholar 

  4. Tseng Y H, Mou C Y, Chan J C. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. Journal of the American Chemical Society, 2006, 128(21): 6909–6918

    Article  CAS  Google Scholar 

  5. Cao X Y, Wen F, Bian W, Cao Y, Pang S J, Zhang WK. Preparation and comparison study of hydroxyapatite and Eu-hydroxyapatite. Frontiers of Materials Science in China, 2009, 3(3): 255–258

    Article  Google Scholar 

  6. Jagadeesan D, Deepak C, Siva K, Inamdar M S, Eswaramoorthy M. Carbon Spheres Assisted Synthesis of Porous Bioactive Glass Containing Hydroxycarbonate Apatite Nanocrystals: a Material with High in Vitro Bioactivity. Journal of Physical Chemistry C, 2008, 112(19): 7379–7384

    Article  CAS  Google Scholar 

  7. Zhu D M, Wang F, Gao C L, Xu Z. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation. Frontiers of Chemical Engineering in China, 2008, 2(3): 253–256

    Article  CAS  Google Scholar 

  8. Lächelt U, Wagner E. Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers. Frontiers of Chemical Science and Engineering, 2011, 5(3): 275–286

    Article  Google Scholar 

  9. Almirall A, Larrecq G, Delgado J A, Martínez S, Planell J A, Ginebra M P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials, 2004, 25(17): 3671–3680

    Article  CAS  Google Scholar 

  10. Ma M G, Zhu J F. Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. European Journal of Inorganic Chemistry, 2009, 36: 5522–5526

    Google Scholar 

  11. Sun R X, Lu Y P, Chen K Z. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method. Materials Science and Engineering: C, 2009, 29(4): 1088–1092

    Article  CAS  Google Scholar 

  12. Shum H C, Bandyopadhyay A, Bose S, Weitz D A. Double emulsion droplets as microreactors for synthesis of mesoporous. Chemistry of Materials, 2009, 21(22): 5548–5555

    Article  CAS  Google Scholar 

  13. Sun R X, Chen K Z, Lu Y P. Fabrication and dissolution behavior of hollow hydroxyapatite microspheres intended for controlled drug release. Materials Research Bulletin, 2009, 44(10): 1939–1942

    Article  CAS  Google Scholar 

  14. Cheng X K, He Q J, Li J Q, Huang Z L, Chi R A. Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Crystal Growth & Design, 2009, 9(6): 2770–2775

    Article  CAS  Google Scholar 

  15. Cheng X K, Huang Z L, Li J Q, Liu Y, Chen C L, Chi R A, Hu Y H. Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere. Crystal Growth & Design, 2010, 10(3): 1180–1188

    Article  CAS  Google Scholar 

  16. Jiang H Z, Stupp S I. Dip-pen patterning and surface assembly of peptide amphiphiles. Langmuir, 2005, 21(12): 5242–5246

    Article  CAS  Google Scholar 

  17. Zhang W X, Yang Z H, Liu Y, Tang S P, Han X Z, Chen M. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. Journal of Crystal Growth, 2004, 263(1–4): 394–399

    Article  CAS  Google Scholar 

  18. Steiner Z, Rapaport H, Oren Y, Kasher R. Effect of surface-exposed chemical groups on calcium-phosphate mineralization in watertreatment systems. Environmental Science & Technology, 2010, 44(20): 7937–7943

    Article  CAS  Google Scholar 

  19. Yang Z H, Zhao M, Florin N H, Harris A T. Synthesis and characterization of CaO nanopods for high temperature CO2 capture. Industrial & Engineering Chemistry Research, 2009, 48(24): 10765–10770

    Article  CAS  Google Scholar 

  20. Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. Journal of Controlled Release, 2006, 110(2): 260–265

    Article  CAS  Google Scholar 

  21. Ito M, Hidaka Y, Nakajima M, Yagasaki H, Kafrawy A H. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. Journal of Biomedical Materials Research, 1999, 45(3): 204–208

    Article  CAS  Google Scholar 

  22. Wang H X, Guan S K, Wang Y S, Liu H J, Wang H T, Wang L G, Ren C X, Zhu S J, Chen K S. In vivo degradation behavior of Cadeficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids and Surfaces. B, Biointerfaces, 2011, 88(1): 254–259

    Article  CAS  Google Scholar 

  23. Aoki H, Aoki H, Kutsuno T, Li W, Niwa M. An in vivo study on the reaction of hydroxyapatite-sol injected into blood. Journal of Materials Science. Materials in Medicine, 2000, 11(2): 67–72

    Article  CAS  Google Scholar 

  24. Zhang C M, Cheng Z Y, Yang P P, Xu Z H, Peng C, Li G G, Lin J. Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties. Langmuir, 2009, 25(23): 13591–13598

    Article  CAS  Google Scholar 

  25. Yao A H, Ai F R, Liu X, Wang D P, Huang WH, Xu W. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature. Materials Research Bulletin, 2010, 45(1): 25–28

    Article  CAS  Google Scholar 

  26. Pon-On W, Meejoo S, Tang I M. Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 2008, 112(2): 453–460

    Article  CAS  Google Scholar 

  27. Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. Journal of Materials Science. Materials in Medicine, 2005, 16(10): 899–907

    Article  CAS  Google Scholar 

  28. Wu Y J, Bose S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir, 2005, 21(8): 3232–3234

    Article  CAS  Google Scholar 

  29. Wang A J, Lu Y P, Zhu R F, Li S T, Xiao G Y, Zhao G F, Xu W H. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. Journal of Biomedical Materials Research. Part A, 2008, 87(2): 557–562

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, W., Yang, Z. et al. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery. Front. Chem. Sci. Eng. 6, 246–252 (2012). https://doi.org/10.1007/s11705-012-1299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1299-9

Keywords

Navigation