Skip to main content
Log in

Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets

  • Research Article
  • Published:
Frontiers of Agriculture in China

Abstract

MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression by translational repression or transcript degradation. Thus far, a large number of miRNAs have been identified from model plant species and the quantity of miRNAs has been functionally characterized in diverse plants. However, the molecular characterizations of the conserved miRNAs are still largely elusive in wheat. In this study, 32 wheat miRNAs (TaMIRs) currently released in the Sanger miRBase (the microRNA database) were selected to evaluate the expression patterns under conditions of non-stress (CK) and salt stress treatment. Based on the analysis of semiquantitative RT-PCR and quantitative real qRT-PCR, TaMIR159a, TaMIR160, TaMIR167, TaMIR174, TaMIR399, TaMIR408, TaMIR11124 and TaMIR1133 were found to have responses to salinity stress, with an upregulated pattern under salt stress treatment. Based on a BLAST search against the NCBI GenBank database, the potential targets of the salt-inducible wheat miRNAs were predicted. Except for TaMIR399 not being identified to have the putative target genes, other salt-inducible TaMIRs were found to possess 2 to 7 putative target genes. Together, our results suggest that a subset of miRNAs are involved in the mediation of salt stress signaling responses in wheat via their roles on the regulation of acted target genes at post-transcriptional and translation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15(11): 2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19(6): 1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Chen S L, Polle A (2010). Salinity tolerance of Populus. Plant Biol (Stuttg), 12(2): 317–333

    Article  CAS  Google Scholar 

  • Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666): 2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Cui Q, Yu Z, Purisima E O, Wang E (2006). Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol, 2: 46

    Article  PubMed  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot (Lond), 103(1): 29–38

    Article  CAS  Google Scholar 

  • FAO (2010). FAO Land and Plant Nutrition Management Service. 2008, http://www.fao.org/ag/agl/agll/spush (October 29, 2010)

  • Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature, 428(6982): 485–486

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36 (Database issue): D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y, Zhu B (2009). Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Science in China C series-Life Sci, 52(11): 1091–1100

    Article  CAS  Google Scholar 

  • Kong Y, Elling A A, Chen B, Deng XW (2010). Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. American Journal of Plant Sciences, 1(2): 69–76

    Article  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17): 4311–4322

    Article  PubMed  CAS  Google Scholar 

  • Livak K J, Schmittgen T D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 25(4): 402–408

    CAS  Google Scholar 

  • Lu S, Sun Y H, Chiang V L (2008). Stress-responsive microRNAs in Populus. Plant J, 55(1): 131–151

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Gong Q, Bohnert H J (2006). Dissecting salt stress pathways. J Exp Bot, 57(5): 1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Millar A A, Waterhouse P M (2005). Plant and animal microRNAs: similarities and differences. Funct Integr Genomics, 5(3): 129–135

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol, 167(3): 645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59(1): 651–681

    Article  PubMed  CAS  Google Scholar 

  • Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955): 257–263

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell, 8(4): 517–527

    Article  PubMed  CAS  Google Scholar 

  • Shukla L I, Chinnusamy V, Sunkar R (2008). The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 1779(11): 743–748

    PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8(1): 25

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 16(2): 123–132

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 9(4): 499–511

    Article  CAS  Google Scholar 

  • Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 132(16): 3657–3668

    Article  PubMed  CAS  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol, 10(1): 123

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci, 10(12): 615–620

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J K, Sun Q (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 8(6): R96

    Article  PubMed  CAS  Google Scholar 

  • Yin Z J, Shen F F (2010). Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res, 9(2): 1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Guo C, Li C, Xiao K (2008). Cloning, characterizatio and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Front Agric China, 2(2): 141–149

    Article  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007). Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun, 354(2): 585–590

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

About this article

Cite this article

Lu, W., Li, J., Liu, F. et al. Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Front. Agric. China 5, 413–422 (2011). https://doi.org/10.1007/s11703-011-1133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-011-1133-z

Keywords

Navigation