Skip to main content

Advertisement

Log in

Physical properties of aqueous blend of diethanolamine and sarcosine: experimental and correlation study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, physical properties such as density, refractive index and viscosity of aqueous diethanolamine sarcosinate (DEA-SAR) solution were measured at different temperatures. The knowledge of physical properties is necessary for the process design and simulation of acid gas absorber plant. Various concentrations of aqueous DEA-SAR solutions (0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) were investigated at temperature ranging from 298.15 to 333.15 K. The reported results showed an increment behavior in the physical properties with the increase in concentration isothermally, and a decreasing one with the rise in temperature of the solution at any given concentration. Empirical models were applied to correlate the experimental data of each physical property as a function of both concentration and temperature. A quantitative analysis of variation was carried out for estimating the significance of the physical property’s data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • (NOAA), N. O. a. A. A. (2016). Trends in carbon dioxide. Retrieved 08/12/2016

  • Afshar Ghotli R, Abdul Aziz AR, Atadashi IM, Hasan DB, Kong PS, Aroua MK (2015) Selected physical properties of binary mixtures of crude glycerol and methanol at various temperatures. J Ind Eng Chem 21:1039–1043. doi:10.1016/j.jiec.2014.05.013

    Article  CAS  Google Scholar 

  • Akbar MM, Murugesan T (2012) Thermophysical properties for the binary mixtures of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [hmim][Tf2N] + N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K. J Mol Liq 169:95–101. doi:10.1016/j.molliq.2012.02.014

    Article  CAS  Google Scholar 

  • Aronu UE, Svendsen HF, Hoff KA (2010) Investigation of amine amino acid salts for carbon dioxide absorption. Int J Greenhouse Gas Control 4(5):771–775. doi:10.1016/j.ijggc.2010.04.003

    Article  CAS  Google Scholar 

  • Aronu UE, Hartono A, Svendsen HF (2011a) Kinetics of carbon dioxide absorption into aqueous amine amino acid salt: 3-(methylamino)propylamine/sarcosine solution. Chem Eng Sci 66(23):6109–6119. doi:10.1016/j.ces.2011.08.036

    Article  CAS  Google Scholar 

  • Aronu UE, Hessen ET, Haug-Warberg T, Hoff KA, Svendsen HF (2011b) Equilibrium absorption of carbon dioxide by amino acid salt and amine amino acid salt solutions. Energy Procedia 4:109–116. doi:10.1016/j.egypro.2011.01.030

    Article  CAS  Google Scholar 

  • Aronu UE, Hessen ET, Haug-Warberg T, Hoff KA, Svendsen HF (2011c) Vapor–liquid equilibrium in amino acid salt system: experiments and modeling. Chem Eng Sci 66(10):2191–2198. doi:10.1016/j.ces.2011.02.033

    Article  CAS  Google Scholar 

  • Aziz NFA, Shariff AM, Shaikh MS, Keong LK, Garg S, Aftab A (2016) Physical properties of aqueous sodium salt solution of α-methylalanine (Na-AMALA). Procedia Eng 148:444–450

    Article  Google Scholar 

  • Derks PW, Hogendoorn KJ, Versteeg GF (2005) Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions. J Chem Eng Data 50(6):1947–1950. doi:10.1021/je050202g

    Article  CAS  Google Scholar 

  • Feron PHM, ten Asbroek N (2005) New solvents based on amino-acid salts for CO2 capture from flue gases. In: Wilson ESRWKFG, Thambimuthu TMG (eds) Greenhouse gas control technologies 7. Elsevier Science Ltd, Oxford, pp 1153–1158

    Chapter  Google Scholar 

  • Garcia AAR, Leron RB, Soriano AN, Li M-H (2015) Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid. J Chem Thermodyn 81:136–142. doi:10.1016/j.jct.2014.10.005

    Article  CAS  Google Scholar 

  • Garg S, Shariff A, Shaikh M, Lal B, Aftab A, Faiqa N (2016a) Surface tension and derived surface thermodynamic properties of aqueous sodium salt of l-phenylalanine. Indian J Sci Technol. doi:10.17485/ijst/2016/v9i29/92903

    Google Scholar 

  • Garg S, Shariff AM, Shaikh MS, Lal B, Aftab A, Faiqa N (2016b) Measurement and prediction of physical properties of aqueous sodium salt of l-phenylalanine. J Serb Chem Soc. doi:10.2298/JSC160222081G

    Google Scholar 

  • Garg S, Shariff AM, Shaikh MS, Lal B, Aftab A, Faiqa N (2016c) Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture. Chem Eng Res Des 113:169–181. doi:10.1016/j.cherd.2016.07.015

    Article  CAS  Google Scholar 

  • Garg S, Shariff AM, Shaikh MS, Lal B, Aftab A, Faiqa N (2016d) VLE of CO2 in aqueous potassium salt of L-phenylalanine: experimental data and modeling using modified Kent-Eisenberg model. J Nat Gas Sci Eng 34:864–872. doi:10.1016/j.jngse.2016.07.047

    Article  CAS  Google Scholar 

  • Garg S, Murshid G, Mjalli FS, Ali A, Ahmad W (2017) Experimental and correlation study of selected physical properties of aqueous blends of potassium sarcosinate and 2-piperidineethanol as a solvent for CO2 capture. Chem Eng Res Des 118:121–130. doi:10.1016/j.cherd.2016.12.013

    Article  CAS  Google Scholar 

  • Graber TA, Galleguillos HR, Céspedes C, Taboada ME (2004) Density, refractive index, viscosity, and electrical conductivity in the Na2CO3 + Poly(ethylene glycol) + H2O System from (293.15 to 308.15) K. J Chem Eng Data 49(5):1254–1257. doi:10.1021/je034233s

    Article  CAS  Google Scholar 

  • Herzog HJ (2001) Peer reviewed: what future for carbon capture and sequestration? Environ Sci Technol 35(7):148A–153A. doi:10.1021/es012307j

    Article  CAS  Google Scholar 

  • Holst JV, Kersten SRA, Hogendoorn KJA (2008) Physiochemical properties of several aqueous potassium amino acid salts. J Chem Eng Data 53(6):1286–1291. doi:10.1021/je700699u

    Article  Google Scholar 

  • IEA (2012) France. https://www.iea.org/publications/freepublications/publication/English.pdf. Accessed 24 Apr 2017

  • Khan SN, Hailegiorgis SM, Man Z, Shariff AM, Garg S (2017) Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. J Mol Liq 229:221–229. doi:10.1016/j.molliq.2016.12.056

    Article  CAS  Google Scholar 

  • Korson L, Drost-Hansen W, Millero FJ (1969) Viscosity of water at various temperatures. J Phys Chem 73(1):34–39. doi:10.1021/j100721a006

    Article  CAS  Google Scholar 

  • Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443. doi:10.1016/j.rser.2014.07.093

    Article  CAS  Google Scholar 

  • Lu J-G, Ji Y, Zhang H, Chen M-D (2010) CO2 capture using activated amino acid salt solutions in a membrane contactor. Sep Sci Technol 45(9):1240–1251. doi:10.1080/01496391003775865

    Article  CAS  Google Scholar 

  • Lu J-G, Hua A-C, Xu Z-W, Fan F, Cheng L, Lin F-Y (2012) Measurement and prediction of densities, viscosities, and surface tensions for aqueous solutions of potassium citrate. Fluid Phase Equilib 327:9–13. doi:10.1016/j.fluid.2012.05.007

    Article  CAS  Google Scholar 

  • MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669. doi:10.1039/C004106H

    Article  CAS  Google Scholar 

  • Majchrowicz ME, Brilman DWF (2012) Solubility of CO2 in aqueous potassium L-prolinate solutions—absorber conditions. Chem Eng Sci 72:35–44. doi:10.1016/j.ces.2011.12.014

    Article  CAS  Google Scholar 

  • Ma’mun S, Jakobsen JP, Svendsen HF, Juliussen O (2006) Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass% 2-((2-aminoethyl)amino)ethanol solution. Ind Eng Chem Res 45(8):2505–2512. doi:10.1021/ie0505209

    Article  Google Scholar 

  • Mandal BP, Guha M, Biswas AK, Bandyopadhyay SS (2001) Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem Eng Sci 56(21–22):6217–6224. doi:10.1016/S0009-2509(01)00279-2

    Article  CAS  Google Scholar 

  • Mandal BP, Kundu M, Bandyopadhyay SS (2003) Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine). J Chem Eng Data 48(3):703–707. doi:10.1021/je020206a

    Article  CAS  Google Scholar 

  • Maqsood K, Mullick A, Ali A, Kargupta K, Ganguly S (2014) Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies. Rev Chem Eng 30(5):453–477

    Article  CAS  Google Scholar 

  • Mazinani S, Ramazani R, Samsami A, Jahanmiri A, Van der Bruggen B, Darvishmanesh S (2015) Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution. Fluid Phase Equilib 396:28–34. doi:10.1016/j.fluid.2015.03.031

    Article  CAS  Google Scholar 

  • Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1):431–441. doi:10.1016/j.energy.2012.08.006

    Article  CAS  Google Scholar 

  • Muhammad A, Mutalib MIA, Wilfred CD, Murugesan T, Shafeeq A (2008) Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K. J Chem Eng Data 53(9):2226–2229. doi:10.1021/je800282a

    Article  CAS  Google Scholar 

  • Navarro SS, Leron RB, Soriano AN, Li M-H (2014) Thermophysical property characterization of aqueous amino acid salt solution containing serine. J Chem Thermodyn 78:23–31. doi:10.1016/j.jct.2014.05.019

    Article  CAS  Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization Wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972. doi:10.1126/science.1100103

    Article  CAS  Google Scholar 

  • Portugal AF, Sousa JM, Magalhães FD, Mendes A (2009) Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem Eng Sci 64(9):1993–2002. doi:10.1016/j.ces.2009.01.036

    Article  CAS  Google Scholar 

  • Rahim NA, Ghasem N, Al-Marzouqi M (2015) Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. J Nat Gas Sci Eng 26:108–117. doi:10.1016/j.jngse.2015.06.010

    Article  Google Scholar 

  • Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475. doi:10.1021/es0158861

    Article  CAS  Google Scholar 

  • Shaikh MS, Shariff AM, Bustam MA, Murshid G (2013) Physical properties of aqueous blends of sodium glycinate (SG) and piperazine (PZ) as a solvent for CO2 capture. J Chem Eng Data 58(3):634–638. doi:10.1021/je301091z

    Article  CAS  Google Scholar 

  • Shaikh MS, Shariff AM, Bustam MA, Murshid G (2015) Measurement and prediction of physical properties of aqueous sodium l-prolinate and piperazine as a solvent blend for CO2 removal. Chem Eng Res Des 102:378–388. doi:10.1016/j.cherd.2015.07.003

    Article  CAS  Google Scholar 

  • Shaikh MS, Shariff AM, Garg S, Bustam MA (2016) Physical properties of aqueous solutions of potassium l-prolinate from 298.15 to 343.15 K at atmospheric pressure. Chemical. doi:10.1007/s11696-016-0111-6

    Google Scholar 

  • Shariff AM, Shaikh MS, Bustam MA, Garg S, Faiqa N, Aftab A (2016) High-pressure solubility of carbon dioxide in aqueous sodium l-prolinate solution. Procedia Eng 148:580–587. doi:10.1016/j.proeng.2016.06.516

    Article  CAS  Google Scholar 

  • Shen S, Yang Y-N, Wang Y, Ren S, Han J, Chen A (2015) CO2 absorption into aqueous potassium salts of lysine and proline: density, viscosity and solubility of CO2. Fluid Phase Equilib 399:40–49. doi:10.1016/j.fluid.2015.04.021

    Article  CAS  Google Scholar 

  • Simons K, Brilman W, Mengers H, Nijmeijer K, Wessling M (2010) Kinetics of CO2 absorption in aqueous sarcosine salt solutions: influence of concentration, temperature, and CO2 loading. Ind Eng Chem Res 49(20):9693–9702. doi:10.1021/ie100241y

    Article  CAS  Google Scholar 

  • Song H-J, Lee M-G, Kim H, Gaur A, Park J-W (2011) Density, viscosity, heat capacity, surface tension, and solubility of CO2 in aqueous solutions of potassium serinate. J Chem Eng Data 56(4):1371–1377. doi:10.1021/je101144k

    Article  CAS  Google Scholar 

  • Song H-J, Park S, Kim H, Gaur A, Park J-W, Lee S-J (2012) Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int J Greenhouse Gas Control 11:64–72. doi:10.1016/j.ijggc.2012.07.019

    Article  CAS  Google Scholar 

  • Tan C-S, Chen J-E (2006) Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Sep Purif Technol 49(2):174–180. doi:10.1016/j.seppur.2005.10.001

    Article  CAS  Google Scholar 

  • Tirona L-A, Leron RB, Soriano AN, Li M-H (2014) Densities, viscosities, refractive indices, and electrical conductivities of aqueous alkali salts of α-alanine. J Chem Thermodyn 77:116–122. doi:10.1016/j.jct.2014.05.014

    Article  CAS  Google Scholar 

  • Tseng Y-M, Thompson AR (1964) Densities and refractive indices of aqueous monoethanolamine, diethanolamine, triethanolamine. J Chem Eng Data 9(2):264–267. doi:10.1021/je60021a043

    Article  CAS  Google Scholar 

  • Venkat A, Kumar G, Kundu M (2010) Density and surface tension of aqueous solutions of (2-(methylamino)-ethanol +2-amino-2-methyl-1-propanol) and (2-(methylamino)-ethanol + N-methyl-diethanolamine) from (298.15 to 323.15) K. J Chem Eng Data 55(11):4580–4585. doi:10.1021/je1002626

    Article  CAS  Google Scholar 

  • Wagner W, Cooper JR, Dittmann A, Kijima J, Kretzschmar HJ, Kruse A, Mareš R, Oguchi K, Sato H, Stöcker I, Šifner O, Takaishi Y, Tanishita I, Trübenbach J, Willkommen T (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power 122(1):150–184. doi:10.1115/1.483186

    Article  CAS  Google Scholar 

  • Wei C-C, Puxty G, Feron P (2014) Amino acid salts for CO2 capture at flue gas temperatures. Chem Eng Sci 107:218–226. doi:10.1016/j.ces.2013.11.034

    Article  CAS  Google Scholar 

  • Zhao W, Shi Y, Wei J, Ye Q (2008) Experimental study on CO2 Absorption and regenation of aqueous solutions of potassium glycinate. J Chem Eng Chin Univ 22(4):690–696

Download references

Acknowledgements

The authors are thankful to Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat, Oman for assisting in completing this work both financially and technically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Murshid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Murshid, G., Mjalli, F.S. et al. Physical properties of aqueous blend of diethanolamine and sarcosine: experimental and correlation study. Chem. Pap. 71, 1799–1807 (2017). https://doi.org/10.1007/s11696-017-0158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0158-z

Keywords

Navigation